Research on Attitude Analysis of Hydraulic Support Based on Column Length
DOI:
https://doi.org/10.5545/sv-jme.2024.991Keywords:
analysis of hydraulic support attitude, simulation analysis, axis pin connection clearance, hydraulic cylinder stiffnessAbstract
The existing hydraulic support attitude monitoring and control methods integrate multiple sensing technologies, but it is difficult to apply and promote due to unclear monitoring mechanisms, complicated types, and a large number of sensors. Aiming at the problem of attitude monitoring and control of hydraulic support, firstly, the kinematics mathematical model of hydraulic support is established by the key marker point method and the two-dimensional bar system model, and the forward and inverse solution algorithm of hydraulic support attitude based on the double-drive length of front and rear columns is proposed. Secondly, the rigid body dynamics simulation model of hydraulic support is constructed to verify the theoretical analytical model and prove the correctness of the algorithm. The rigid body simulation model can be used as the attitude monitoring system of hydraulic support. Thirdly, considering the influence of material elastic deformation, a rigid-flexible coupling dynamic simulation model of hydraulic support is established to explore the influence of elastic deformation of components on the attitude of hydraulic support and its causes. On this basis, the rigid-flexible coupling dynamic simulation model of the hydraulic support with clearance is established by replacing the revolute pair in the simulation model with the solid axis pin connection unit. The influence of the axis pin connection clearance on the attitude of the hydraulic support and its causes are explored, and the actual attitude and change characteristics of the hydraulic support under simulated real conditions are obtained. Finally, considering the force compression of the hydraulic cylinder of the column, the rigid-flexible and machine-liquid coupling dynamic simulation model of the hydraulic support with clearance is constructed.
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 The Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.