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The amplitude modulation method was used to generate non-Gaussian signals that acted as excitation for fatigue tests. The fatigue life of 
structures under non-Gaussian excitation has been proven to be closely related to the features of the amplitude modulation signal (AMS) 
and kurtosis of the structural response. In this study, the modelling of the AMS by Beta and Weibull distributions and the resulting kurtosis 
range problem is first reviewed. To solve this problem, a new method for creating an AMS based on a linear combination of Beta and Weibull 
distributions is proposed. To ensure that the high kurtosis of the amplitude-modulated non-Gaussian signal is correctly transferred to the 
structural response, the method is further developed to fulfil the specifications for the fatigue damage spectrum (FDS) by controlling the 
spectral content of the AMS. Herein, a Gaussian AMS with a low-pass cutoff frequency is first generated and then converted to a Weibull or 
Beta AMS based on the cumulative distribution function (CDF) transformation. The proposed method is verified using simulated and field-
measured data. The results show that the full range of specified kurtosis is achieved with the new AMS modelling method. The high kurtosis 
of the non-Gaussian input signal can be transferred to the linear system response if the mean value of AMS during the period of the system 
impulse response is the same as AMS.
Keywords: non-Gaussian, amplitude modulation method, fatigue damage spectrum, kurtosis

Highlights
•	 A new AMS modelling method to solve the kurtosis range problem was introduced.
•	 A criterion based on the period of system impulse response defines slowly varying AMS.
•	 CDF transformation controls the spectral content of AMS.
•	 The low cutoff frequency of AMS ensures high kurtosis transmission.

0  INTRODUCTION

The random vibrations are widely used to test the 
durability of products. A Gaussian excitation signal 
characterized by power spectral density (PSD) is 
produced using modern shaker controllers to evaluate 
the reliability and fatigue life of products [1], while 
non-Gaussian random vibration is commonly 
encountered in practice, e.g., wind-induced vibration 
[2], road roughness induced vehicle vibration [3], and 
ocean wave-induced vibration [4]. Various standards 
for vibration tests indicate that non-Gaussian random 
vibrations with a kurtosis value greater than 3 lead to 
a faster fatigue failure in products [5] to [7].

To better evaluate the fatigue damage potential 
of non-Gaussian random vibrations, several methods 
have been proposed to generate non-Gaussian signals 
with given PSD and kurtosis [8] and [9], which can 
be broadly divided into two families: stationary non-
Gaussian with peaks and non-stationary non-Gaussian 
with bursts [10]. For stationary non-Gaussian signal 
generation, commonly used methods include the 
nonlinear transform method [11] and [12], analytical 
phase manipulation method [13] and filtered Poisson 
process method [14]. A comprehensive review was 

presented in [15]. Using the aforementioned methods, 
an acceleration test can be conducted by increasing 
the kurtosis while maintaining the same PSD level. 
However, it has been proved that the high kurtosis 
of the excitation signal does not necessarily transfer 
to the system response [16]. According to Rizzi et 
al. [17], a stationary non-Gaussian excitation results 
in a Gaussian response in a linear dynamic system. 
This observation was further investigated by Kihm 
et al. [18], who demonstrated that for a linear system 
operating close to the natural frequency, the non-
Gaussian excitation results in a Gaussian response 
when the rate of peaks in the excitation is smaller than 
the period of the systems impulse response. 

In contrast, it has been shown that the high 
kurtosis of non-stationary non-Gaussian excitation 
is more easily transferred to the system response, 
resulting in greater fatigue damage compared to the 
damage by stationary non-Gaussian excitation [10].

The amplitude modulation method for generating 
non-stationary, non-Gaussian signals with bursts 
was first developed by Smallwood [19]. A stationary 
Gaussian signal was generated and then multiplied 
with a slowly varying amplitude modulation signal 
that was independent of the Gaussian signal. The 
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convolution of a Hanning window function and an 
impulse train with a Beta-distributed amplitude were 
used to create an amplitude modulation signal (AMS). 
The kurtosis of a non-stationary signal generated 
using this method was governed by four parameters 
of the AMS. However, it is not practical to consider 
four parameters together to reach a specified kurtosis; 
the parameters b and L are often set to zero. This 
assumption does not always correspond to the field-
measured non-Gaussian data. To simplify the AMS 
modelling, Xu et al. [20] used a two-parameter 
Weibull distribution to model the AMS based on the 
probability density function (PDF) of the running 
root mean square (RMS) of the field-measured data. 
Xu indicated that when modelling the AMS by the 
Weibull distribution, inappropriate determination of 
the number of bursts may lead to distortion of the 
original PSD [21]. The Weibull and Beta distribution 
method was later further developed to include a 
theoretical relationship between the kurtosis of 
the AMS and the parameters of the Weibull/Beta 
distribution [22]. Using stationary and non-stationary 
excitation, Braccesi et al. [23] investigated the transfer 
of kurtosis to the system response. Furthermore, 
the fatigue damage spectrum (FDS) was utilized to 
evaluate the damage potential of field-measured non-
Gaussian signals [24]. Using FDS as the criterion, 
Cornelis et al. [25] simulated non-Gaussian random 
vibrations on a shaker and analysed the transfer of the 
non-Gaussian characteristics of the excitation signal 
through a linear system.

The problem with the current simplified Weibull 
and Beta distribution method is the limited kurtosis 
range and how to ensure the high kurtosis is correctly 
transferred to the structural response during the 
construction of AMS. In this paper, the kurtosis 
range problem when modelling the AMS by Weibull 
and Beta distributions is first revealed. A new linear 
combination method is then presented to address this 
problem. A criterion based on the AMS's running 
mean value during the system impulse response 
period is then proposed to answer the question of 
under which condition a non-Gaussian signal can be 
regarded as slowly varying. The new method is finally 
developed to ensure the high kurtosis of the generated 
non-Gaussian signal is transferred to the structural 
response by controlling the spectral content of the 
AMS.

The remainder of this study is organized as 
follows. In Section 1, the theoretical background 
of random signal properties, two commonly used 
amplitude modulation methods and the FDS 
calculation process are presented. The kurtosis 

range problem is revealed for the Weibull and Beta 
distribution methods. In Section 2, a novel AMS 
modelling method is presented to address the kurtosis 
range problem. The method is further developed 
to control kurtosis transmission based on spectral 
control and cumulative distribution function (CDF) 
transformation of the AMS. In Section 3, simulated 
and field-measured data are used to validate the 
proposed approach. The field data was measured on 
a dummy box installed on a mast, using a triaxial 
accelerometer. Finally, the conclusions are presented 
in Section 4.

1  THEORETICAL BACKGROUND

1.1  Gaussian and non-Gaussian Random Signals

The nth-order central moment of random signal x(t) 
can be calculated as follows:
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where μ is the mean value, and N is the number of data 
samples.

The skewness and kurtosis are used to characterize 
the non-Gaussian characteristics of a random signal. 
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where σ is the standard deviation, S is the skewness, 
and K is the kurtosis.

For a Gaussian signal, the skewness is 0, and the 
kurtosis is 3. The PDF of signals with different kurtosis 
values is shown in Fig. 1 in semi-log coordinates. 

Fig. 1.  PDFs of signals with different kurtosis values
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From Fig. 1, we can see that a kurtosis value 
greater than 3 indicates a sharper peak and wider 
tails relative to a Gaussian distribution. A wider tail 
indicates a higher probability of peak values, which 
leads to larger fatigue damage and faster failure.

1.2  Overview of the Amplitude Modulation Method

The essential idea behind the amplitude modulation 
method is to model non-Gaussian signal y(t) using 
Gaussian signal g(t) multiplied by a slowly varying 
AMS w(t):

 y t g t w t( ) ( ) .� � � �  (5)

To make the PSD of the non-Gaussian signal 
approximately the same as that of the Gaussian 
signal, the mean square of the AMS is scaled to one. 
Assuming that the mean of the Gaussian and non-
Gaussian signals is zero and that the Gaussian signal 
is independent of the AMS, the kurtosis of the non-
Gaussian signal is:
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where Kw is the kurtosis of w(t) obtained with the 
mean value, which can be calculated as:
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Clearly, the kurtosis of the generated non-
Gaussian signal depends on that of the AMS. The 
Weibull distribution [21] and Beta distribution [19] 
are commonly used to simulate AMS, and it has been 
concluded that the generated non-Gaussian signal 
retains the same properties as the field data.

1.2.1  Weibull Distribution

The PDF of AMS w(t) following a Weibull distribution 
is defined as:
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where k is the shape parameter, and λ is the scale 
parameter.

The average of powers of w(t) is:
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where Γ is the gamma function.
According to Eq. (6), the kurtosis of the non-

Gaussian signal is:
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Using Eq. (10), the shape parameter k can be 
obtained once the kurtosis of the non-Gaussian 
signal (target kurtosis) has been given. Fig. 2 shows 
the relationship between target kurtosis and shape 
parameter when the kurtosis is increased from 3 to 12.

Fig. 2.  Relationship between target kurtosis  
and shape parameter k

As shown in Fig. 2, when target kurtosis is 
below 6.4, k is close to 0, indicating that the Weibull 
distribution method applies only when target kurtosis 
is above 6.4, and the corresponding range of the shape 
parameter k is [1.28, 1.88].

1.2.2  Beta Distribution

The PDF of AMS b(t) following a Beta distribution is 
defined as:
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The Beta distribution is determined by the two 
positive values, α and β.

The average of powers of b(t) is:
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The skewness of the AMS with a Beta distribution 
is:
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Typically, the skewness of the signal is 0; 
thus, α = β. The kurtosis of the non-Gaussian 
signal is:
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Fig. 3 shows the relationship between target 
kurtosis and the parameter β. As can be observed, 
when target kurtosis is above 6.05, the value of β is 
negative, which is forbidden. Thus, the reasonable 
range of β is [0, 10.7].

Fig. 3.  Relationship between target kurtosis and parameter β

Fig. 4.  PDF of Beta distribution with parameter β  
in the range [0, 10.7]

Fig. 4 shows the PDF when β is in the range 
[0, 10.7]. As can be observed, the shape of the PDF 

changes for different values of β. When 0 < β < 1, 
the PDF has a bimodal shape, which is not useful 
here. When β = 1, the PDF is a straight line, and the 
kurtosis is 5.4. When β > 1, the PDF follows a Beta 
distribution. Above all, the Beta distribution method 
is limited to a kurtosis value of up to 5.4, and the β is 
in the range [1, 10.7]. To make the PSD for the non-
Gaussian signal basically the same as that for the 
Gaussian signal, the mean square of the AMS is also 
scaled to one.

1.3  Fatigue Damage Spectrum (FDS)

FDS is commonly used to evaluate the damage 
potential of field-measured non-Gaussian signals. 
As shown in Fig. 5, the FDS is calculated based on 
the responses of a series of single-degree-of-freedom 
(SDOF) systems to the same base excitation, thereby 
showing the fatigue damage encountered for a 
particular SDOF system within a certain time duration 
[21].

Fig. 5.  Calculation process of the FDS

The stress is assumed to be roughly proportional 
to pseudo-velocity in this study [26]. For an SDOF 
system with a natural frequency fn and a damping 
ratio ζ, the output pseudo-velocity xpv to an input 
acceleration xa can be calculated:

 x F b a xpv filter n n a� � �, , ,  (15)

where Ffilter indicates filtering of the input signal 
using a ramp invariant digital filter, bn and an are the 
coefficients of a digital filter [27].

Using the output xpv, the cumulative damage can 
be calculated in both time and frequency domains. 
In the time domain, a faster algorithm than the rain 
flow cycle counting (RFCC) method [28] is used 
to calculate the total damage index Dt. It starts by 
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converting the output pseudo-velocity into a peak-
valley signal, where the data points between the 
maxima and minima are deleted. Each maximum 
xpv,pk,i is regarded as the peak value of a cycle with 
the range 2xpv,pk,i. The minima are counted in the same 
manner, and the sum is divided by 2.
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where Spk,i (i = 1, 2, ..., q) is assumed to be proportional 
to the maximum and minimum values xpv,pk,i and q 
is the number of maximum and minimum values 
considered, and b is the fatigue exponent.

Whereas for exact fatigue life predictions, c and 
k have to be known explicitly, in practice, their values 
may be unknown or difficult to estimate. In this case, 
it is possible to set c = k = 1 and nevertheless use the 
FDS as an indicator to compare the damage potential 
of different vibration profiles [29].

In the frequency domain, the total damage is 
calculated as [22]:
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where T is the total time of exposure to the stress 
environment, Γ is the Gamma function, σS is the 

RMS of the stress time history, and σpv is the RMS of 
pseudo-velocity.

The frequency domain method has many 
advantages, such as reduced computation time. 
However, it only applies when the excitation is a 
Gaussian signal [22].

2  NOVEL AMS MODELLING METHOD

2.1  Linear Combination Method to Model the AMS

As mentioned in Section 1.2.1, the Weibull distribution 
is suitable for generating non-Gaussian signals with a 
kurtosis greater than 6.4, whereas the Beta distribution 
is applicable for a kurtosis range of [3, 5.4]. To fill 
the gap in the kurtosis range of [5.3, 6.5], a new 
method based on a linear combination of the two 
aforementioned modulation signals is proposed.

The modulation signal, b(t), is generated by the 
Beta distribution and the other modulation signal, 
w(t), is generated by the Weibull distribution. The 
linear superposition of the two modulation signals 
is then used to create a new amplitude modulation 
signal, s(t).

 s t m b t n w t( ) ( ) ( ).� � � �  (18)

Since kurtosis of s(t) is the same as kurtosis of 
s(t)/n, n is set 1 in this paper. According to Eq. (6), the 
kurtosis of the modulation signal, s(t), is:
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Using the generated b(t) and w(t), parameter 
m can be calculated according to Eq. (20), as target 
kurtosis Ks is given. Fig. 6 shows the relationship 
between m and target kurtosis. Fig. 7 shows the PDF 
of the modulation signals when target kurtosis is in the 
range [5.3, 6.5] using the linear combination method.

Thus, it can be concluded that a non-Gaussian 
signal with a kurtosis value greater than 3 can be 
simulated based on the three amplitude modulation 
functions. However, the creation of the AMS must be 
treated carefully so that a high kurtosis is transferred to 
the response of the system, causing the expected extra 
damage in a fatigue test. A new method for controlling 

the spectral content of the AMS is presented in this 
paper.

2.2  Criterion for Slowly Varying non-Gaussian Signal

For an SDOF system with resonance frequency f0 and 
damping ratio ζ, the motion of this system is:

     x t x t x t y t y t( ) ( ) ( ) ( ) ( ),� � � �2 2
0 0

2

0 0
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where y(t) is the base input non-Gaussian signal and 
ω0 is the angular natural frequency (ω0 = 2×π×f0).
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When the response of the SDOF system is 
calculated as relative displacement between the SDOF 
system mass and the base multiplied by the angular 
natural frequency ω0, the pseudo-velocity impulse 
response function, h(t), is [30]:

 h t exp t sin t td( ) ( ) .�
�
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1

1
0

2
0

�
�� �  (22)

The response of the pseudo-velocity filter to an 
input non-Gaussian signal is:
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where h(t) is the impulse response of a pseudo-
velocity filter and ‘*’ denotes convolution.

Fig. 6.  Relationship between m and target kurtosis

There is first a transient part in the beginning of 
the signal; however, after a short period, we only have 
to look backwards by duration T, which is the period 
of h(t).

If the input non-Gaussian signal varies slowly, 
the AMS, w(t), can be considered a constant during 
T. Then, we can take w(t) outside the integral in Eq. 
(23), which indicates that the mean of w(t) during the 
period of h(t) is the same as w(t); thus, the response 
is the same as the response of the Gaussian signal, 
multiplied by w(t):

 r t w w t g t h t( ) ( ) ( )* ( ) .� � �� �0

2  (24)

Because g(t)*h(t) results in a Gaussian signal, 
from Eq. (24), it can be deduced that the response is 
also a slowly varying non-Gaussian signal. Therefore, 
it can be concluded that if the mean value of w(t) 
during the period of h(t) is the same as w(t), a non-
Gaussian signal can be regarded as slowly varying.

Fig. 7.  PDF of modulation signal when target kurtosis is in the 
range [5.3, 6.5]

Fig. 8.  Pseudo-velocity impulse response function h(t)

Fig. 9.  Comparison between w(t) and mean of w(t)

Assuming an SDOF system with a resonance 
frequency of 20 Hz and resonance gain factor  
Q = 1/(2ζ) = 10, the impulse response, h(t), for the 
pseudo-velocity filter, is shown in Fig. 8. From Fig. 
8, we observe that the period of h(t) is approximately 
1 s. According to Eqs. (22) to (24), it can be seen that 
the kurtosis is not relevant in the criterion for slowly 
varying non-Gaussian signals. The key is to see if the 
mean value of w(t) during the period of h(t) is the same 
as w(t). Assuming that the target kurtosis of a non-
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Gaussian signal is 9, then the AMS can be modelled 
using a Weibull distribution. The mean of w(t) in a 
frame length of 1 s is taken and compared with w(t), 
and the results are shown in Fig. 9. From Fig. 9, it can 
be observed that the mean of w(t) is essentially the 
same as w(t), which indicates that the non-Gaussian 
signal can be regarded as slowly varying.

2.3  Control of the AMS

To ensure that the high kurtosis of the amplitude-
modulated signal is correctly transferred to the 
structural response, the AMS must be slowly varying, 
which means the frequency content of the AMS 
must be controlled. However, if the Weibull/Beta 
approach is used directly to create the AMS and 
perform low-pass filtering, the PDF of the filtered 
AMS will change. A better method based on the CDF 
transformation is proposed in this study to solve this 
problem. A Gaussian AMS with a cutoff frequency 
(denoted as Wcut) is first generated from a flat PSD 
whose frequency content is easy to control and then 
converted to a Weibull or Beta signal with given 
parameters while maintaining the low-pass frequency 
content. The cutoff frequency can be determined 
based on the frequency content of the running RMS of 
the field-measured non-Gaussian data. An example is 
presented in this paper.

The CDF of a standard Gaussian signal is:
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where erf() is the error function.
The error function is defined as follows:
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The Gaussian distribution is then transformed 
into a Weibull or Beta distribution, depending on the 
target kurtosis.

The CDF of the Weibull distribution is:
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Set λ = 1; then, the inverse cumulative 
distribution is:
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Using Eqs. (25) and (28) and substituting y with 
Fx, the Weibull distribution AMS can be expressed as 
follows:
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The CDF of the Beta distribution cannot be 
expressed using elementary functions. Therefore, the 
inverse CDF cannot be expressed in a simple form.

For the Beta distribution, the AMS can be 
calculated by computing the inverse incomplete beta 
function and substituting the variable with Fx in Eq. 
(25):
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For the linear combination of the Weibull 
and Beta distributions, CDF transformations are 
performed based on the methods presented above to 
achieve the final AMS.

In each case, the mean square of AMS is finally 
scaled to one after CDF transformation.

The required Wcut is determined by the fact 
that the responses after the SDOF filters in the FDS 
calculation do not become Gaussian because if they 
do, the FDS will be the same as that for a Gaussian 
signal with the same PSD. As shown in Fig. 13, the 
NAVMAT PSD [31] is used as an example, and 
the target kurtosis value is set to 9. The PDF of 
the simulated Gaussian and non-Gaussian (using 
Wcut 1 Hz and 100 Hz) is shown in Fig. 10 in semi-
log coordinates. The responses of a filter with a 
resonant frequency of 200 Hz and Q = 10 to the three 
synthesized signals are calculated. A comparison of 
the response PDF and Gaussian signal with the same 
RMS is shown in Fig. 11 in semi-log coordinates. As 
can be observed, as the Wcut increases, the AMS w(t) 
cannot be considered as a constant during the period 
of h(t), which will make the response signals tend to 
be Gaussian.

Fig. 10.  PDF of synthesized Gaussian and non-Gaussian signals
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generated using the MATLAB software. The sampling 
frequency Fs is 10 kHz, and the number of sampling 
points N is 220. The generated signal is assumed to be 
an acceleration signal.

 g t N Fs real ifft Z� � � � � � �� �/ .2  (31)

Fig. 13.  PSD of NAVMAT profile and synthesized Gaussian signal

The synthesized Gaussian signal is shown in Fig. 
14. The target kurtosis is set to values between 3.5 
and 12 in increments of 0.5. The new AMS modelling 
method is used to generate a non-Gaussian signal. A 
good agreement between the kurtosis of the target and 
generated non-Gaussian signals is shown in Fig. 15 
(Wcut = 1 Hz).

The effects of Wcut on the kurtosis of the filter 
response are shown in Fig. 16. As can be seen, as Wcut 
increases, the kurtosis of the response decreases.

Fig. 14. Synthesized Gaussian signal

Assuming that target kurtosis is 6, the effects 
of different Wcut on the FDS are shown in Fig. 17. 
As can be observed in Fig. 17, as Wcut increases, 
the FDS of the simulated non-Gaussian signal 
decreases, especially over the low-frequency range. 

Fig. 11.  PDF of response and Gaussian signal with the same RMS

Fig. 12.  Effects on the response kurtosis with Q = [5 10 20 50]

Another factor that affects the non-Gaussianity 
of the response after the SDOF filters in the FDS 
calculation is the Q value. Fig. 12 shows the effects of 
Q on the response kurtosis. We can see from Fig. 12 
that the kurtosis decreases as Q increases. The result 
can be expected, because as Q increases, the damping 
ratio decreases, and the duration of the impulse 
response increases. When the duration of the impulse 
response reaches a certain value, the AMS w(t) cannot 
be considered as a constant, which will make the 
response tend to be Gaussian.

3  CASE STUDY

3.1  Simulated non-Gaussian Signal

The PSD of the NAVMAT profile is shown in Fig. 
13. The PSD is defined by the corner points in the 
frequency and the corresponding PSD values. A 
frequency record Z is created using the amplitudes as 
the square roots of the PSD values. Each frequency 
point is appointed with a random phase in the 
interval [0, 2π]. A Gaussian time signal is created 
using an appropriately scaled IFFT (Inverse Fast 
Fourier Transform). A stationary Gaussian signal is 
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This behaviour can be predicted because as Wcut 
increases, the AMS w(t) varies faster, then the w(t) 
cannot be regarded as constant during the period of 
h(t), especially for SDOF systems with lower natural 
frequencies, which have longer periods of h(t). As a 
result, the response tends to be Gaussian, and FDS 
decreases.

Fig. 15.  Target kurtosis and kurtosis of synthesized signal

Fig. 16.  Effects of Wcut [1, 10, 100] on the kurtosis of filter 
response

Fig. 17.  FDS of NAVMAT profile PSD, and synthesized Gaussian 
and non-Gaussian signals with Wcut = [0.1 1 10]

a) 

b) 

c) 

d) 
Fig. 18.  Effects of Q on FDS; at  

a) Q = 5, b) Q = 10, c) Q = 20, and d) Q = 50 

Fig. 18 shows the effects of Q on the FDS. From 
Fig. 18, we can see that, overall, the FDS increases as 
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Q increases. But, as the Q value increases, the FDS of 
a non-Gaussian signal tends to be close to the FDS of 
a Gaussian signal. The reason is that a higher Q value 
leads to a longer period of h(t), especially for SDOF 
systems with lower natural frequencies. Then, the w(t) 
cannot be regarded as constant during the period of 
h(t). As a result, the response tends to be Gaussian, 
leading to a smaller kurtosis and lower FDS.

3.2 Field-Measured non-Gaussian Signal

In this case study, the field-measured signal induced 
by wind is used to validate the proposed method. 
The test item is a dummy box containing electronics 
installed on a mast, as shown in Fig. 19. The dummy 
box was equipped with a B&K WB0179 triaxial 
accelerometer set and a wind speed measuring device. 
The box was a standard Ericsson micro-radio base 
equipment manufactured in cast lightweight alloy with 
integrated heat sinks. The dimensions are about 530 
mm × 400 mm × 185 mm, and the weight was about 
21 kg. The back side of the dummy box was mounted 
to the mast at a height of 50 meters. The running RMS 
is calculated using 10 s frames with 50 % overlapping.

Fig. 19.  Test item and setup

The field data, along with the running RMS, are 
shown in Fig. 20, which indicates a kurtosis of 5.635. 
The PSD of the running RMS is shown in Fig. 21. As 
can be observed from Fig. 21, the upper frequency 
limit is approximately 0.01 Hz; thus, the Wcut is set 
to 0.01 Hz. The simulated AMS is shown in Fig. 22. 
A synthesized non-Gaussian signal with a kurtosis of 
5.597 is also shown in Fig. 20.

Fig. 20.  Field data and synthesized non-Gaussian signal

Fig. 21.  PSD of running RMS of field data

Fig. 22.  Simulated AMS with Wcut = 0.01
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Fig. 23 shows the PSD of synthesized non-
Gaussian signal and field data. Fig. 24 shows the 
PDF of synthesized non-Gaussian signal and field 
data in semi-log coordinates. Fig. 25 shows the FDS 
of synthesized signal and field data (Q = 10 and b = 
5). From Figs. 23 to 25, we can observe that a good 
match is achieved between the PSD, PDF and FDS of 
synthesized non-Gaussian signal and field data.

Fig. 23.  PSD of field data and synthesized non-Gaussian signals

Fig. 24.  PDF of field data and synthesized Gaussian and non-
Gaussian signals

Fig. 25.  FDS of field data, synthesized Gaussian and non-
Gaussian signals

4  DISCUSSION

The width of the kurtosis range of the amplitude 
modulation method for non-Gaussian signal generation 
is enhanced in this study. A linear combination of the 
AMS modelled by Weibull and Beta distributions is 
used to address the kurtosis range limitation problem. 
This study demonstrates that a non-Gaussian signal 
can be regarded as slowly varying if the running mean 
value of the AMS during the period of the system 
impulse response is the same as that of the original 
AMS. The high kurtosis of the non-Gaussian input 
signal can be transferred to the linear system response 
using the proposed AMS control method, in which 
the spectral content of the AMS is controlled based 
on the CDF transformation. A higher low-pass cutoff 
frequency results in a lower kurtosis of the linear 
response and hence, a lower FDS. Over a practical 
damping range, it is found that the response of the 
SDOF system, especially with low natural frequency, 
to a slowly varying non-Gaussian loading tends to 
be Gaussian as Q increases. The proposed approach 
is proven to be effective using simulated and field-
measured data.
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