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Efficient surface defects classification is one of the research hotpots in steel plate defect recognition. Compared with traditional methods, 
deep learning methods have been effective in improving classification accuracy and efficiency, but require a large amount of labeled data, 
resulting in limited improvement of detection efficiency. To reduce the labeling effort under the premise of satisfying the classification 
accuracy, a deep active learning method is proposed for steel plate surface defects classification. Firstly, a lightweight convolutional neural 
network is designed, which speeds up the training process and enhances the model regularization. Secondly, a novel uncertainty-based 
sampling strategy, which calculates Kullback-Leibler (KL) divergence between two kinds of distributions, is used as an uncertainty measure 
to select new samples for labeling. Finally, the performance of the proposed method is validated using the steel surface defects dataset from 
Northeastern University (NEU-CLS) and the milling steel surface defects dataset from a local laboratory. The proposed global pooling-based 
classifier with global average pooling (GAPC) network model combined with the Kullback-Leibler divergence sampling (KLS) strategy has the 
best performance in the classification of steel plate surface defects. This method achieves 97 % classification accuracy with 44 % labeled 
data on the NEU-CLS dataset and 92.3 % classification accuracy with 50 % labeled data on the milling steel surface defects dataset. The 
experimental results show that the proposed method can achieve steel surface defects classification accuracy of not less than 92 % with no 
more than 50 % of the dataset to be labeled, which indicates that this method has potential application in surface defect classification of 
industrial products.
Keywords: surface defect classification, convolutional neural network, active learning, global pooling

Highlights
•	 A deep active learning method for improving the efficiency of steel plate surface defect classification by reducing labeling cost 

is proposed.
•	 Proposed GAPC-based CNN model can speed up the training process and enhance the model regularization.
•	 The KLS uncertainty sampling strategy can effectively reduce the amount of label data required.
•	 The proposed method can achieve classification accuracy of not less than 92 % with no more than 50 % of the dataset 

requiring labeling.

0  INTRODUCTION

Steel plate is widely utilized in aerospace production 
[1] and [2], architecture industry [3] and [4], and 
machinery manufacturing [5] and [6]. Its surface 
defects are the key factors affecting the quality of 
steel products. However, different categories of 
steel surface defects often occur during production. 
Surface defects of the steel plate, such as rolled-in 
scale, patches, crazing, pitted surface, inclusion, and 
scratches, are unavoidable. The defects not only affect 
production quality but also incur economic losses and 
give rise to safety concerns. An efficient classification 
of steel plate surface defects can contribute to a better 
understanding of the causes of defect formation, 
optimize production processes, enhance product 
quality and improve economic efficiency. Therefore, 
efficient and accurate classification of surface defects 

has become an indispensable function in the iron and 
steel industry.

The traditional methods of steel plate surface 
defect inspection mainly include manual visual 
inspection, eddy current inspection [7] and magnetic 
flux leakage testing [8], etc. Owing to the influence 
of subjective factors and a high error inspection rate, 
these methods have been unable to meet the current 
inspection requirements of the iron and steel industry. 
In recent years, with the development of science and 
technology, the inspection technology based on deep 
learning and machine vision, as a kind of non-contact 
inspection method, has become a research hotspot in 
the field of surface defect inspection [9] to [11]. As 
a kind of deep learning model, convolutional neural 
network (CNN) [12] has outstanding performance in 
many classification tasks in industry. The success of 
CNN models for classification tasks brings a rapid 
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development of CNN-based steel defect classification 
methods. Zhou et al. [13] proposed a CNN model for 
effective and robust classification of surface defects 
in hot rolled steel sheets. This model achieved a 
classification accuracy of over 97 % through 500 
iterations using 60 % of the dataset as labeled data 
for training. He et al. [14] proposed a new method for 
defects detection and classification of low carbon steel 
wire arc additive manufacturing (WAAM) products 
using an improved cost-sensitive convolutional 
neural network. This method achieved a classification 
accuracy of over 92 % through 800 iterations using 
75 % of the dataset as labeled data for training. 
However, although the above studies can obtain ideal 
classification accuracy, they need more than 60 % of 
the dataset as labeled data for training, which will 
inevitably produce high labeling cost and affect the 
classification efficiency.

Currently, among the methods that can 
effectively alleviate the labeling cost, four of them 
have shown great potential: transfer learning [15], 
data augmentation by generative models [16] and 
[17], semi-supervised learning [18] to [20], and active 
learning [21]. 

Transfer learning is developed on the assumption 
that earlier layers in the convolutional base learn 
generic, reusable local patterns like curves and edges, 
while higher layers learn task-specific features. Hence 
the lower layers in an existing model trained on one 
big dataset can be reused on a relatively small-sized 
target dataset to improve the generalization ability of 
the model. Both Fu [22] and Yang [23] adopted pre-
trained SqueezeNet [24] as backbone architecture. 
Although the high classification accuracy had been 
achieved, all available data still needs to be labeled. 
In addition, surface defects have different image 
contexts compared to most large datasets, so it is hard 
to find the right number of layers to reuse [25]. This 
means the training time will be inevitably extended. 
As shown in [22], the model was trained on NEU-CLS 
dataset [26] in 20 minutes by using a NVDIA TITAN 
X GPU (12G memory). 

Generative models, like variational autoencoders 
(VAE) [27], generative adversarial networks (GAN) 
[28], and their variants, provide a different way to 
solve the problem. Instead of manually collecting 
more training data, the existing samples can be used 
to guide the generation of new artificial samples. Yun 
et al. [29] used conditional convolutional VAE [30] 
to generate images for each kind of defect and then 
used a CNN-based model for classification. Tang et al. 
[31] took a similar approach to classify photovoltaic 
module defects. However, the generative model 

they adopted was GAN. This kind of method has 
the disadvantage of generating many samples with 
less information because the generation process does 
not take sample informativeness into account [32]. 
Consequently, these methods may prolong the training 
time and waste computational resources. 

Semi-supervised learning uses both labeled and 
unlabeled data for model training. Gao et al. [33] 
proposed combined pseudo-label CNN (PLCNN). 
However, PLCNN abandoned the unsupervised 
pretraining process that plays an essential role 
in the original paper. This may harm the model’s 
classification ability. The accuracy of PLCNN on 
NEU-CLS dataset is 90.7 %, which is inferior to 
other methods. He et al. [34] and He et al. [35] both 
utilized semi-supervised GAN (SGAN) to perform 
defects classification. The major difference between 
their works is the former used a trained convolutional 
autoencoder [36] to initialize the discriminator in 
SGAN with identical topology, whereas the latter 
trained another residual network and combined it 
with SGAN to form a multi-training algorithm. 
Using generative models may help to learn the latent 
structure of defects, but it will take more time and 
computational resources to complete the training.

Compared with the above three methods, the 
uncertainty-based active learning method is an 
effective approach to reduce both labeling cost and 
computing resource, where the most informative 
samples are incrementally selected for labeling 
to improve the model classification ability at low 
labeling budgets. Yang et al. [37] presented a new 
framework that combines a fully convolutional 
network and an uncertainty method in active learning 
to reduce biomedical image analysis annotation effort 
by making judicious suggestions on the most effective 
annotation areas. This method can achieve state-of-
the-art segmentation performance using 50 % of the 
training data. There are three widely used uncertainty 
sample strategies, namely: least confident (LC) [38], 
margin sampling (MS) [39] and entropy (EN) [40]. 
These strategies assume that model’s prediction on an 
unlabeled data pool obtains the model’s uncertainty 
over the unlabeled data. By applying different 
uncertainty measures, the most informative samples 
can be selected for labeling. However, these methods 
only utilize the model predictions on the unlabeled 
data, ignoring the uncertainty information of the 
model on the labeled data, which is considered useful. 
By taking both types of uncertainty into consideration, 
the uncertainty of model can be better measured, and 
the most informative samples can be screened out for 
labeling.
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In this work, a deep active learning method for 
steel plate defect classification is proposed. To enhance 
the learning efficiency and reduce the computational 
cost, a simplified convolutional network is designed 
based on simple features of hot rolled steel plate 
surface defects to expedite the training process. A 
global pooling layer is adopted to improve the model’s 
generalization ability. Experiments are carried out on 
both global average pooling and global max pooling 
to find which is more suitable for active learning. 
Then, the average probability distribution over classes 
(PDC) calculated from labeled data for a specific class 
is considered as the best performance of the model 
on this class to integrate two kinds of uncertainty. 
By quantifying the difference between the PDC of an 
unlabeled sample and the optimal model performance 
on the predicted sample label, a new uncertainty 
index is obtained to guide sample selection. Based 
on experiment results on the NEU-CLS dataset 
and milling steel plate surface defects dataset, the 
proposed method can achieve superior classification 
results with less labeled data. 

1  OVERALL FRAMEWORK

The framework (Fig. 1) consists of two key 
components: a convolutional neural network for 
model training and a sample strategy for data 
collection. A small portion of the existing dataset is 

randomly selected for labeling. The selected samples 
from the labeled data pool which is denoted as DL, 
and the rest of the samples compose the unlabeled 
data pool which is denoted as DU. As is shown in Fig. 
1, the model is firstly trained by the initial labeled 
data pool. Then the trained model is used to predict 
the labeled and unlabeled data respectively, and the 
defect images are selected from the unlabeled data 
pool for labeling according to the proposed sampling 
strategy. At this point, the two data pools are updated. 
The training process is restarted and repeated until the 
model classification performance is satisfied.

2  METHOD

2.1  Model Design

2.1.1  Feature Extractor

Steel plate surface defects are not as complex as human 
faces or other objects with lots of features. There is 
no need to use a big and complex convolutional base 
which can be hard to train. Hence, a shallow network 
is utilized to reduce training time. The convolutional 
base adopted in this paper can be considered as a 
shallow version of visual geometry group (VGG) 
network [41] and [42], where only four convolutional 
layers are kept, and every two convolutional layers 

Fig. 1.  Overview of the proposed method framework



Strojniški vestnik - Journal of Mechanical Engineering 70(2024)11-12, 554-568

557Improving the Efficiency of Steel Plate Surface Defect Classification by Reducing the Labelling Cost Using Deep Active Learning 

are followed by a max-pooling layer. All batch 
normalization layers are removed to speed up training.

2.1.2  Global Pooling as Structural Regularizer

The traditional classifier (TRC), followed by the 
convolutional base, is composed of two hidden layers 
and a dense output layer [43] and [44]. In recent years, 
a new type of classifier has emerged. Scholars [45] and 
[46] have replaced the two hidden layers in traditional 
classifier with global average pooling layer (GAP). 
Szegedy claimed that this replacement has boosted 
the top-1 accuracy by about 0.6 %. The outputs of the 
feature extractor are multiple feature maps. In TRC 
setting, the feature maps need to go through the flatten 
layer to be expanded into a one-dimensional feature 
vector before they can be passed into the classifier. 
However, GAP and global max pooling (GMP) 
calculate the average and maximum value of each 
feature map as the output. Fig. 2 shows the difference 
between flatten and global pooling.

Fig. 2.  The difference between flatten and global pooling

To explore the performance of classifiers based 
on global pooling, this paper carried out a comparative 
analysis of global pooling-based classifier (GPC) 
and TRC based on commonly used regularization 
methods, and clarified which classifier is the most 
effective in the subsequent experimental results. The 

designed CNN model structure is shown in Fig. 3. 
Compared with traditional CNN, the main difference 
is the use of global pooling to replace the hidden 
layers of the final densely connected classifier.

2.2  Sampling Strategy

The labeled data pool DL can not only be used to train 
the model, but also contains the model’s uncertainty 
information about the dataset. Unlike traditional 
uncertainty-based sample strategies which only 
utilize model predictions on the unlabeled data, The 
Kullback-Leibler divergence sampling (KLS) is 
proposed to consider the uncertainty of the model on 
the labeled data and incorporate it into the sampling 
process. 

The single sample in the labeled data pool DL 
and the unlabeled data pool DU is denoted as x, and 
the corresponding label is y. The Initial model is 
trained by DL. After predicting every sample in DU, 
a prediction array is available, each row of which is 
the PDC for a specific sample. For sample xu∈DU, its 
PDC is denoted as: 
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where p(yc | xu, W), c∈(1, ..., C) represents the 
probability that the label of sample xu is yc, with C 
being the number of classes. W represents the model 
parameters. y' is the predicted label which can be 
calculated by:

 y p y x W
y

u' � � �argmax | , .  (2)

Fig. 3.  Architecture of the designed network
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The generated prediction array can be split 
into separate PDC subgroups based on the sample’s 
predicted label. Suppose y' = yc, the PDC of xu will be 
contained in group yc, which is: 
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The next step is to predict the labeled data. For a 
trained model with strong regularization, it is 
optimized for the trained data pool DL. Therefore, its 
predictions on DL are considered as its best 
performance. For sample x1∈DL, its PDC and 
predicted label can be calculated by Eqs. (1) and (2). 
For label yc, the average PDC p(y = yc | X c

l , W)avg can 
be calculated by:  
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where X c
l , represents the set of samples whose 

predicted labels are yc, N is the size of X c
l . 

p(y = yc | X c
l , W)avg is taken as the best 

performance of model on label yc. In the PDC group 
belonging to yc, any normal sample’s PDC should be 
close to this average distribution. If p(y = yc | xu, W) 
diverges too far from p(y = yc | X c

l , W)avg, the sample xu 
is considered as abnormal. In other words, the model 
is uncertain about the class of sample xu.

To measure the difference between two 
distributions, the Kullback-Leibler (KL) divergence 
[47] is introduced:

 KL P Q P i P i
Q ii( || ) ( ) log
( )

( )
.� �  (5)

The KL divergence between these two 
distributions (kls) as the model’s uncertainty about 
sample xu can be calculated by: 

kls KL p y y X W p y y x Wu
c

l
c

avg

c
u� �� � �� �� �| , || | , ,  (6)

p(y = yc | X c
l , W)avg is calculated for every label yc 

as the performance baseline. Then, for every sample’s 
PDC in every PDC subgroup, the corresponding kls 
value is calculated. In every subgroup, the top k 
samples with highest kls value will be selected for 
labeling. This strategy naturally guarantees the 
diversity in each selected batch by sampling an equal 
number of samples in every subgroup. This means 
that the total number of selected samples will be k×C.

2.3  Stopping Criterion

Considering that active learning is iterative, a stopping 
criterion is needed to stop the training process when 
the model performance is reached. Therefore, the 
stopping criterion should be highly connected to the 
model performance. As the designed model is strongly 
regularized, validation accuracy (VA) is adopted as the 
criterion. According to the experiments, the validation 
accuracy of the network is always less than or equal to 
the test accuracy. 

The original data set is split into three parts: 
DL for training, DV for validation, DU for sampling. 
Therefore, all labeling work will be costed by the 
labeling of DL, DV and the sampled data. The pseudo-
code of the proposed method is shown in Algorithm I. 
The implementation process of this method is shown 
in Fig. 4.

Algorithm I: Deep active learning method for steel 
plate surface defect classification 

Input: initial training data pool DL, validation data 
pool DV, unlabeled data pool DU, random initialized 
model parameters W', stopping criterion VA, number 
of sampled images for each class k. 
Output: optimized model parameters W.
1 Repeat:
2 Make predictions on DU;
3 The predicted labels are calculated by Eq. (2);
4 The PDC of all samples is counted and grouped 

according to the predicted label;
5 Make predictions on DL;
6 The performance benchmark of the model on 

each label is calculated according to Eq. (4);
7 The KLS value corresponding to each PDC is 

calculated by Eqs. (5) and (6);
8 In each PDC group, k samples with the highest 

KLS value are selected.
9 The samples are labeled, DLand DU are updated;
10 The model is trained with DL;
11 DU is used to verify the performance of the model 

and VA' is calculated;
12 Until VA' > VA.
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3  EXPERIMENTAL SETUP

The public hot-rolled steel strip database from 
Northeastern University (NEU-CLS) [26] is used to 
evaluate the effectiveness and applicability of the 
proposed method for the defect classification of a steel 
plate surface.

3.1 NEU-CLS Dataset

NEU-CLS is a standard high-quality database 
collecting the typical defects of hot-rolled steel 
plate surfaces. This dataset includes six types of 
defects: rolled-in scale, patch, crazing, pitted surface, 
inclusion, and scratches. There are 300 grayscale 
images for each type of defect (with a total number 
of 1800 images). The resolution of each image is 
200×200 pixels. A selection of defect images is shown 
in Fig. 5.

3.2 Implementation Details

The experiments are performed on a work 
computer with Intel(R) Core i5-11400F CPU, 16GB 
memory and NVIDIA GeForce RTX 3060 GPU (12G 
memory). The dataset of NEU-CLS is divided into 
three parts, specifically 60 % for training, 20 % for 
validation, and 20 % for testing. The 5 % of training 

data (9 images per class) are sampled at random as 
initial labeled data pool DL. The rest of the training 
data make up the unlabeled data pool DU. Batch size is 
set to 8 and SGD optimizer is used with a momentum 
of 0.9. Early stopping with a patience of 10 is used 
for all experiments to stop the training process when 
overfitting begins. The results of the experiment are 
averaged over 5 runs. The detailed information of the 
designed network is shown in Table 1. The network 
takes 200×200×1 image as input and outputs 6 class 
predictions. 

The experiment is mainly carried out in two parts. 
1. The regularization effect of GPC is tested in 

a supervised learning condition. All training 
data are used to train the model and the 
learning rate is set to 0.005. TRC is mixed with 
dropout and geometric transformation-based 
data augmentation to form four methods as 
comparison. The dropout rate is set to 0.5. The 
geometric transformations include horizontal 
flipping, −30˚ to 30˚ rotations, random shearing 
and zooming. 0.1 of the width and height of 
the image .s shifted at random in the shifting 
operation. The shearing range is set to 0.2 and the 
zooming range is set to [0.8, 1.2]. The GPC with 
global average pooling and global max pooling 
are named as GAPC and GMPC in the following 
experiments, respectively. 

Fig. 4.  The implementation process of this method
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Fig. 5.  Images in NEU-CLS dataset; a) crazing, b) inclusion,  
c) patch, d) pitted surface, e) rolled-in scale, and f) scratch

Table 1.  Detailed configuration of the designed network 
architecture

Layer Kernel size / Stride Output size
Convolution + ReLu 3×3/2 100×100×32
Convolution + ReLu 3×3/2 50×50×32
Maxpool 2×2/1 25×25×32
Convolution + ReLu 3×3/2 13×13×64
Convolution + ReLu 3×3/1 13×13×64
Maxpool 2×2/1 6×6×64
Global average/Maxpool 1×1×64
Dropout 50 % 1×1×64
FC + Softmax 1×1×6

2. The effect of the proposed KLS sampling 
strategy in active learning is compared with the 
traditional uncertainty-based sampling method 
including LC, MS, and EN. Random Sampling 
(RS) is used as a performance base line, which 
discards all uncertainty strategies and randomly 
selects samples from DU in each training cycle. 
The stopping criterion VA is set to 0.95. In the 
experiment, GPC is combined with dropout to 
further strengthen the regularization effect of the 
model. Meanwhile, inverse-time-decay is used to 
gradually decrease the learning rate. The decay 
strategy of the learning rate is defined as:

 l l
d N
d

r ini
r epoch

s

� �
�

�
1

1

,  (7)

where lini is the initial learning rate. dr is the decay 
rate and its value is set to 0.96. ds is the decay step 
and its value is set to 162.  Nepoch is the epoch number 
of the current training iteration, which is reset at the 
beginning of each iteration. By using learning rate 
decay, the initial learning rate can be set to a large 
value to speed up the model training and avoid local 

minima [48]. Therefore, in this part of the experiments, 
lini is set to 0.01.

The accuracy, precision, recall, and F1-score 
are used as the metrics to evaluate the classification 
performance of the proposed method comprehensively. 
After the model prediction, the defect image will be 
defined as one of four cases: true positive (TP), false 
positive (FP), true negative (TN) and false negative 
(FN). The aforementioned metrics are defined as:
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where the NumTP , NumFP , NumTN , NumFN represent 
the number of defects that are defined as TP, FP, TN, 
FN, respectively.

4  RESULTS AND DISCUSSION

4.1  Comparison of Regularization Methods

As shown in Table 2, TRC without any regularization 
method has a short training time, but its classification 
accuracy is relatively low: only 91.4 % of the test 
samples are correctly classified. The method of 
combining TRC and data augmentation has the 
highest classification accuracy, reaching 96.4 %, but 
its training time is also relatively long, indicating that 
the augmentation process and the enlarged data set 
have a great impact on the model training time. The 
combination of TRC and dropout reduces the training 
time by about 20 % compared with data augmentation, 
but its classification accuracy is the lowest, only 90.8 
%. The classification accuracy of the GPC (GAPC and 
GMPC) method proposed in this paper reaches 96.2 
%, which is only 0.2 % lower than that of the data 
augmentation method, but the GPC method greatly 
reduces the training time. Especially, the GMPC 
method reduces the model training time by about 50 % 
compared with the data augmentation method, which 
greatly improves the training efficiency and enhances 
the generalization ability of the model in a short time.
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RS. Fig. 7 shows that traditional methods perform 
similarly under the GMPC-based classifier, and the 
classification performance of RS is the worst. 

However, the proposed KLS method constantly 
outperforms RS and traditional methods in both 
classifier architectures. Fig. 7 shows that traditional 
methods perform similarly under the GMPC-based 
classifier, and the classification performance of RS 
is the worst. Taking the performance of the GAPC-
based classifier as an example, KLS sampling strategy 
can achieve 91.8 % classification accuracy with 32 
% of the data set to be labeled, which can reduce 
the label cost by more than 3 % compared with the 
traditional methods. Moreover, KLS can achieve 97 
% classification accuracy with 44 % of the dataset to 
be labeled. Compared with the traditional uncertainty 
sampling method, KLS sampling strategy is more 
efficient for the use of labeled data. 

4.3  Comparison of Classifier Performance

To determine the best classifier, the performances 
of GPC-based classifiers (GAPC and GMPC) are 
compared and analyzed. Fig. 8 shows that the gap 

Table 2. The performance of GPC and TRC in supervised learning 
setting

Methods
Accuracy 

[%]
Precision 

[%]
Recall
[%]

F1-score 
[%]

Training 
time [s]

TRC 91.4 91.6 91.4 91.2 69.78
TRC+ 
Augmentation

96.4 96.6 96.4 96.4 102.89

TRC + 
Dropout

90.8 91.2 90.8 90.8 85.07

TRC + 
Augmentation
 + Dropout

95.6 95.6 95.6 95.6 142.37

GMPC 96.2 96.2 96.2 96.2 51.83
GAPC 96.2 96.2 96.2 96.2 62.31

4.2  Comparison of Sampling Strategies

As shown in Fig. 6, under the GAPC-based classifier, 
the classification performance of RS is better than 
traditional methods by more than 5 % in a low label 
budget (<35 % of the dataset to be labeled). When 
the number of labeled data increases to more than 35 
%, the performance of RS stagnates, and traditional 
methods start to catch up and finally outperform 

Fig. 6.  The performance of different sample strategies with GAPC
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between validation loss and training loss of the 
proposed model does not increase with the training 
time, indicating that the regularization effect of GPC is 
significant. Specifically, the accuracy and loss curves 
of the GMPC-based method converge faster in the first 
150 epochs, but after 200 epochs, the performance 
of the GMPC-based method stagnates and starts to 
fluctuate in a wide range. The above situation does not 
appear in the GAPC-based method. Since the number 
of labeled samples increases with time in active 
learning, it can be inferred that the GMPC-based 
method is easy to converge only under the condition 
of a few labeled samples. When the number of labeled 
samples increases to a certain extent, the convergence 
becomes more difficult. Obviously, the GMPC-based 
method is more susceptible to labeled samples. As 
shown in Table 3, under the premise of achieving the 
same classification accuracy (90 %), the GAPC-based 
classifiers require 3 % to 15 % less labeled data than 
the GMPC-based classifiers except for EN. With 44 % 
of the dataset to be labeled (Table 4), the classification 
performance metrics of GAPC-based classifiers 
are 3 % to 14 % higher than that of GMPC-based 
classifiers. Therefore, considering the accuracy and 

model stability, the GAPC-based classifier is more 
suitable than the GMPC-based classifier for steel plate 
surface defect classification. 

The accuracy and amount of labeled data on 
the NEU-CLS dataset of the proposed model and other 
Deep-learning based approaches are shown in Table 5. 
Compared with the end to end (ETE) method [49] and 
Supervised learning method mentioned in section 3.2, 
the proposed method achieves 2 % and 1.4 % higher 
accuracy on the NEU-CLS dataset, respectively, and 
the data that need to be labeled is reduced by 16 % 
and 36 %, respectively. Although the classification 
accuracy of SDC-SN-ELF+MRF method [13] is 0.3 % 
higher than that of the proposed method, the amount 
of labeled data required by this method is significantly 
higher (36 % higher than that of the proposed 
method). The results confirm that the proposed model 
can obtain good accuracy with less labeled data.

Additionally, the average training time of the 
proposed method (omitting the labeling time) is 180 
s, and the final model size is 578.7 KB, which has 
application prospects in improving the efficiency of 
steel plate surface defect classification.

Fig. 7.  The performance of different sample strategies with GMPC
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4.4  Visualization of Defect Area Identification

Class activation graph (CAM) [50] and [51] is used to 
improve the interpretability of the proposed network 
model. The adopted model is obtained from the 
previous experiment, the network structure is GAPC-
based neural network, and the training method is 
active learning method based on KLS. As shown in 
Fig. 9, the significant features that play a decisive role 
in the prediction of the network model are visualized 
in the heatmap. The warmer the color of the area in 
the heatmap, the more that area contributes to the 
model prediction. By superimposing the heatmap with 

a)   b) 
Fig. 8.  a) The loss, and b) accuracy of proposed GPC-based method over time

Table 3.  Percentage of labeled samples needed to reach 90 % of corresponding performance metric

Metric
GAPC GMPC

KLS LC MS EN RS KLS LC MS EN RS
Accuracy 32 35 35 41 35 35 50 38 41 44
Precision 32 35 35 41 32 35 50 38 41 44
Recall 32 35 35 41 35 35 50 38 41 44
F1-score 32 35 35 41 35 35 50 38 41 44

Table 4.  Performance score [%] achieved using labeled data that account for 44 % of the dataset

Metric
GAPC GMPC

KLS LC MS EN RS KLS LC MS EN RS
Accuracy 97.8 94.8 95.5 93.3 93.8 93.8 88.0 91.8 80.6 90.2
Precision 97.9 94.8 95.8 93.3 94.0 93.8 88.8 92.4 83.4 91.0
Recall 97.8 94.8 95.5 93.3 93.8 93.8 88.0 91.8 80.6 90.2
F1-score 97.8 94.8 95.5 93.3 93.8 93.8 87.8 91.8 80.2 90.0

Table 5.  The accuracy and amount of labeled data on the NEU-CLS dataset of proposed model and other deep-learning based approaches

Methods
Accuracy  

[%]
Training data  
[% of dataset]

Validation data  
[% of dataset]

Labeled data
[% of dataset]

ETE [49] 95.8 60 - 60
SDC-SN-ELF + MRF [13] 98.1 80 - 80
Supervised learning method mentioned in section 3.2 96.4 60 20 80
Ours 97.8 24 20 44

Fig. 9.  Defect area identification;  
a) crazing, b) patch, c) pitted surface, d) scratch
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the input image, it is found that the network focuses 
especially on the discriminative parts in the input 
images, which also proves the effectiveness of the 
proposed network model and learning method.

5  EXPERIMENTAL VERIFICATION

5.1  Dataset Preparation

As one of the raw materials commonly used in 
mechanical manufacturing, steel plate needs to be 
processed before it can be put into use. For example, in 
the manufacture of a linear guide plane, the steel plate 
usually needs to be milled. The defects on the surface 
of the steel plate after milling may have an impact on 
the positioning accuracy and service life of the linear 
guide plane. However, unlike hot-rolled steel plates, 
the probability of defects on the steel plates after 
processing is relatively small. Therefore, the number 
of defect samples is usually limited and belongs to the 
dataset with a small amount of data. This is the current 
situation of sample shortage in industry.

Therefore, to verify the applicability of the 
proposed method in industry, the steel plate milling 
experiment is carried out, and the surface defect 
dataset of processed steel plate is obtained. The 
parameters of milling processing are shown in Table 
6. The defect images are collected on the image 
acquisition platform (VMC220) (Fig. 10). The 
defects on the surface of the steel plate after milling 
are pitted surface, scratch, and patch (Fig. 11). The 
number of collected images of pitted surface, scratch 
and patch defects are 200, 200 and 100, respectively. 
Due to the small number of original images, the data 
augmentation method of geometric transformation is 
used to amplify the image data, resulting in a total 
of 900 images, 300 for each type of defect. The 
resolution of each image is 200×200 pixels.

Table 6.  Experimental configurations

Configurations Parameters
Machine tool VMC-C30

Workpiece
Steel S45C
Steel S15C

Milling cutter Kennametal 40A03RS45SE14EG

Spindle speed [r/min]
2000
2500
3000

Cutting depth [mm]
0.2

0.15
0.1

Feed per tooth [mm]
0.005
0.01

0.015

Fig. 10.  Image acquisition platform

a)  b) 

c) 
Fig. 11.  Images in milling steel surface defect dataset;  

a) pitted surface, b) scratch,  and c) patch

5.2  Experimental Setup

The main setups of the experiment have been shown 
in section 3.2. In this experiment, 60 % of the dataset 
is used for training, 20 % for validation and 20 % for 
testing. Then 10 % training data (18 images per class) 
are sampled at random as initial labeled data pool DL. 
The rest of the training data make up the unlabeled 
data pool DU.

5.3  Results and Discussion

Fig. 12 shows that the proposed GAPC-based network 
model still performs stably on the dataset with good 
regularization effect. As shown in Table 7 and Fig.13, 
when the amount of label data used by the model is 50 
% of the dataset, the proposed KLS sampling method 
can achieve 92.3 % classification accuracy, while the 
maximum accuracy of other traditional methods is 
only about 80.4 %. 

Hence, the experimental results indicate that the 
proposed method can still achieve more than 90 % 
classification accuracy when the number of samples 
is small, which reflects its application possibility in 
industry.
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Table 7.  Comparison results of different sample strategies with 
GAPC

Metric Ours [%] LC [%] MS [%] EN [%]
Accuracy 92.3 80.4 75.0 72.5
Precision 91.5 85.2 81.2 79.0
Recall 91.0 80.0 74.6 72.5
F1-score 91.3 79.8 74.3 72.5

6  CONCLUSIONS

To reduce the labeling cost of steel plate surface defect 
classification in industrial production, a lightweight 
CNN model with strong regularization ability is 
designed, and an efficient deep active learning method 
is proposed by combining it with the KLS strategy. 
The specific conclusions are as follows:

Fig. 12.  a) The loss, and  b) accuracy of proposed method over time

Fig. 13.  The performance of different sample strategies with GAPC
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1. The GPC-based classifier can greatly reduce 
the training time while maintaining the same 
performance as the traditional classifier in steel 
plate surface defect classification.

2. A GPC-based lightweight convolutional neural 
network model is proposed. The result indicates 
that the performance of the GAPC-based network 
model is more stable than that of the GMPC-
based network model.

3. The labeling cost can be significantly reduced 
by using the KLS strategy as the uncertainty 
sampling method. Comparative analysis shows 
that the GAPC-KLS model only needs 44 % 
labeled data to achieve 97.8 % classification 
accuracy, and its performance is optimal. 
Meanwhile, this model can still achieve 92.3 % 
classification accuracy with 50 % labeled data on 
the milling steel surface defect dataset. Therefore, 
the proposed method can achieve classification 
accuracy (≥92 %) with limited labeled data (≤50 
% of the dataset to be labeled) on both NEU-CLS 
and milling steel surface defect datasets.
To further improve the classification efficiency, 

the subsequent research will focus on the optimization 
of the convolutional base to reduce the training time 
and improve the training efficiency while ensuring the 
quality of feature extraction. The proposed method 
can provide a reference for steel plate production 
enterprises to reduce the cost of surface defect image 
annotation. In addition, this method may provide a 
new idea for efficient classification of other surface 
defects in industry.
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