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Abstract  This systematic literature review  investigates advancements in intelligent computer-aided design and computer-aided manufacturing (CAD–CAM) 
integration and toolpath generation, analyzing their evolution across Industry 4.0 and emerging Industry 5.0 (I5.0) paradigms. Using the theory–context–
characteristics–methodology framework, the study synthesizes 51 peer-reviewed studies (from 2000 to 2025) to map theoretical foundations, industrial 
applications, technical innovations, and methodological trends. Findings reveal that artificial intelligence (AI) and machine learning  dominate research, driving 
breakthroughs in feature recognition, adaptive toolpath optimization, and predictive maintenance. However, human-centric frameworks central to I5.0, such as 
socio-technical collaboration, remain underexplored. High-precision sectors (aerospace, biomedical) lead adoption, while small and medium enterprises (SMEs) 
lag due to resource constraints. Technologically, AI-driven automation and STEP-NC standards show promise, yet interoperability gaps persist due to fragmented 
data models and legacy systems. Methodologically, AI-based modeling prevails (49 % of studies), but experimental validation and socio-technical frameworks 
are sparse. Key gaps include limited real-time adaptability, insufficient AI training datasets, and slow adoption of sustainable practices. The review highlights the 
urgent need for standardized data exchange protocols, scalable solutions for SMEs, and human-AI collaboration models to align CAD–CAM integration with I5.0’s 
sustainability and resilience goals. By bridging these gaps, this work provides a roadmap for advancing intelligent, human-centered manufacturing ecosystems.
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Highlights
	▪ Artificial Intelligence drives CAD–CAM integration but lacks human-centric focus.
	▪ High-precision sectors lead; SMEs face adoption barriers.
	▪ Interoperability and lack of standardized AI datasets hinder progress.
	▪ Review reveals the need for sustainable, scalable solutions.

1  INTRODUCTION

The manufacturing sector has undergone radical transformation 
through Industry 4.0 (I4.0), characterized by cyber-physical systems 
(CPS), internet of things (IoT), and data-driven automation. These 
technologies have revolutionized production efficiency, enabling 
real-time monitoring, predictive maintenance, and adaptive 
workflows [1,2]. By integrating robotics, cloud computing, and 
artificial intelligence (AI), I4.0 has minimized downtime, optimized 
resource use and reduced operational costs [3,4].

Building on this foundation, Industry 5.0 (I5.0) emphasizes 
human-machine collaboration and sustainability, prioritizing 
ethical resource allocation and workforce upskilling alongside 
technological advancement [5]. This paradigm shift leverages AI 
not to replace human expertise, but to augment it, fostering agile, 
socially responsible manufacturing ecosystems [5]. Computer-aided 
engineering (CAE) plays a crucial role in this aspect. It enables 
product design validation [6], process simulation and optimization. 
This reduces the need for physical prototyping and minimizes costly 
design errors [7].

Despite the advancements in CAE and integrated design 
workflows, a significant disconnect often persists between computer-
aided design (CAD) and computer-aided manufacturing (CAM) 
[8]. CAD tools focus on creating detailed, precise models, yet these 
models do not always seamlessly translate into manufacturable 
instructions for CAM systems [9,10]. This disparity can lead to 

communication bottlenecks, inconsistencies in toolpath generation, 
and rework cycles that undermine efficiency [11,12]. By improving 
data exchange protocols [13,14], standardizing file formats, and 
incorporating real-time feedback from manufacturing constraints, 
organizations can bridge the CAD–CAM gap and accelerate the 
transition from digital designs to production-ready components [11]. 

Various approaches have been developed to automate numerical 
control (NC) code generation directly from CAD models, aiming to 
streamline the transition from design to manufacturing. Traditional 
methods typically rely on geometry-based feature recognition 
[15] and rule-based process planning [16], wherein the system 
extracts manufacturing features (e.g., holes, pockets, slots) from 
3-dimensional (3D) CAD geometry, maps them to corresponding 
machining operations, and then generates toolpaths and tool selection 
data. Knowledge-based systems further enhance this pipeline by 
incorporating predefined machining rules and best practices [17], 
enabling semi-automated decision-making for process parameters 
such as spindle speed, feed rate, and cutting depth. Post-processors 
then translate these planning outputs into machine-specific G-code 
(or equivalent) formats, ensuring compatibility with diverse computer 
numerical control (CNC) equipment. While these workflow-oriented 
techniques have significantly reduced programming time and manual 
intervention, they often demand expert tuning [18] and may lack 
flexibility when confronted with complex geometries or evolving 
production requirements [19]. In recent years, however, AI has begun 
to complement these conventional strategies, leveraging deep neural 
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networks [20] and reinforcement learning (RL) [21] to automate 
feature recognition, optimize toolpaths, and continuously refine CAD 
assumptions in real time [22]. By incorporating AI modules at critical 
points of the CAD to CAM workflow, manufacturers can achieve 
adaptive, self-improving systems [23] that further streamline NC 
code generation and reduce the need for extensive human oversight 
[24], ultimately closing the design-to-production gap [25].

Recent contributions further illustrate this evolution. CAD-Coder 
introduces an open-source vision–language model fine-tuned to 
generate editable CAD code (CadQuery Python) directly from visual 
input [26]. Similarly, CAD-based automated G-code generation for 
drilling operations demonstrates an application program interface 
(API)-driven approach that extracts geometric parameters from CAD 
models and automatically generates CNC code for drilling tasks 
without dedicated CAM software [27]. Complementing these, the 
AutoCAD to G-code converter outlines a workflow for converting 
AutoCAD designs directly into CNC-compatible G-code [28]. Those 
strategies range from AI-driven CAD code generation to lightweight 
API-based tooling.

Despite the growing body of literature on the evolution of 
manufacturing technologies and the integration of AI in CAD–CAM 
workflows [29–31], there remains a lack of comprehensive research 
synthesizing the specific challenges and opportunities in bridging the 
CAD–CAM disconnect, particularly in the context of I4.0 and I5.0 
paradigms. Recent studies have explored individual aspects, such as 
AI-driven NC code generation or feature recognition [32,33], yet these 
efforts are often narrow in scope, limited by the time span of analysis, 
or constrained to specific methodologies. Furthermore, the rapid 
adoption of human-machine collaboration and sustainable practices 
in I5.0 underscores the need for an updated, holistic understanding of 
how these advancements influence design-to-production integration. 
Consequently, a systematic literature review (SLR) is essential to 
consolidate and analyze the existing research landscape. This study 
proposes an SLR of over 50 studies published in the last two decades, 
employing the theory–context–characteristics–methodology (TCCM) 
framework [34], to systematically analyze critical gaps, emerging 
trends and understudied areas that could enhance the CAD and CAM 
interoperability in modern manufacturing ecosystems shaped by I4.0 
and I5.0. Given this focus, the study aims to address the following 
research questions: 
1.	 Theory: Which theoretical models or frameworks guide the 

integration of CAD and CAM in I4.0/5.0 settings?
2.	 Context: In which industrial or organizational contexts is CAD–

CAM integration most frequently examined, and what contextual 
factors shape these efforts?

3.	 Characteristics: Which key technical or organizational features 
(e.g., AI-based tools, knowledge-based systems) facilitate or 
impede CAD–CAM interoperability, and how do they evolve 
under I4.0 and I5.0 paradigms?

4.	 Methodology: Which research methods are used to investigate 
CAD–CAM integration, and how do these methodological choices 
affect the reliability, scalability, and reproducibility of results?

2  METHODS AND MATERIALS

This section outlines the methodology employed to conduct SLR of 
studies addressing CAD–CAM integration within the paradigms of 
I4.0 and I5.0. The approach is designed to systematically identify and 
synthesize relevant research, ensuring a comprehensive analysis of 
theoretical frameworks, contextual factors, technical characteristics, 
and methodological trends. The TCCM framework was selected as 
the analytical lens due to its ability to structure multidimensional 
research inquiries and uncover gaps in literature. This section 

details the data sources, selection criteria, and analytical processes, 
providing sufficient information for replication and validation by 
other researchers.

2.1  Research Design and Analytical Framework

The SLR follows a clear, step-by-step process rooted in proven 
review protocols [35]. It employs the TCCM framework, delivering 
a well-rounded analysis of the literature while staying true to the 
study’s goals [36]. With a spotlight on CAD–CAM integration, the 
review digs deepest into the Theoretical and Methodological angles, 
exploring how challenges are defined, tackled, and resolved. This lens 
sheds light on practical strategies, tools, and techniques, pinpointing 
overlooked areas and opening doors to fresh methodological 
approaches [35].

Compared to alternatives like PRISMA, which prioritize reporting 
transparency [37], TCCM offers a theory-driven and context-
sensitive structure [36]. This is particularly valuable for research 
of interdisciplinary domains like CAD–CAM integration, where 
solutions depend on synergies between theoretical foundations, 
contextual constraints (e.g., industry-specific requirements), system 
characteristics (e.g., scalability), and methodological rigor. The 
inclusion of the Methodology dimension allows us to systematically 
assess how problems are framed, investigated, and resolved in 
existing research, identifying gaps in methods (e.g., underuse of 
AI-driven optimization) and opportunities for methodological 
innovation.

2.2  Data Sources and Study Selection

This review is based on a comprehensive and systematic search of 
academic and industry-related literature to ensure broad coverage 
of relevant studies in the domains of CAD/CAM integration, AI in 
manufacturing, and CNC toolpath optimization. The selected sources 
include peer-reviewed journal articles, conference papers, and book 
chapters, along with a curated set of industry reports and white papers 
to capture practical implementations of emerging technologies.

2.2.1  Data Sources

To maintain academic rigor and reliability, the following key 
databases were utilized:
•	 Scopus – for its extensive indexing of engineering and AI-related 

publications.
•	 Web of Science – providing a broad range of peer-reviewed 

studies in advanced manufacturing
•	 Google scholar & ResearchGate – used selectively to retrieve 

literature, such as industry reports and white papers, ensuring 
coverage of real-world implementations and emerging trends.

2.2.2  Search Strategy

A structured search strategy was employed, using Boolean operators 
to refine results and ensure the retrieval of high-quality studies. 
The primary search terms used included: CAD–CAM integration, 
Industry 4.0, Industry 5.0, AI in manufacturing, NC code generation, 
feature recognition, toolpath optimization, and human-machine 
collaboration.

To enhance relevance, secondary qualifiers such as sustainability, 
interoperability, and systematic review were incorporated. The 
research was limited to studies published between January 2000 and 
March 2025, ensuring a focus on recent advancements while covering 
historical developments in AI-driven manufacturing. In addition 
to direct search results, the reference lists of selected articles were 
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also reviewed to identify further relevant studies, helping to ensure a 
comprehensive literature base.

2.2.3  Inclusion and Exclusion Criteria

To maintain focus and relevance, inclusion and exclusion criteria 
were defined as follows:
•	 Inclusion Criteria:

•	 Studies published between 2000 and 2025, reflecting more 
than two decades of advancements in CAD–CAM integration.

•	 Research addressing CAD–CAM workflows, interoperability, 
or automation in the context of I4.0 or I5.0.

•	 Studies incorporating AI, knowledge-based systems, or other 
innovative approaches to bridge the CAD–CAM gap.

•	 Peer-reviewed articles, conference proceedings, or authoritative 
reviews offering empirical or theoretical insights.

•	 Exclusion Criteria:
•	 Studies unrelated to manufacturing or CAD–CAM processes 

(e.g., pure software development without manufacturing 
applications).

•	 Non-English publications or those lacking sufficient 
methodological detail.

•	 Duplicates or redundant publications from the same research 
group with no significant new contributions.

2.3  Data Extraction and Analysis

Data extraction was conducted manually using a standardized Excel 
template aligned with the TCCM framework. In addition to capturing 
the four core dimensions, the template included several other 
descriptive and analytical fields to support a comprehensive review. 
Specifically, the following elements were recorded for each study: 
•	 Bibliographic details: Paper title, authors, year of publication, 

keywords, journal/conference name.
•	 Research context: Study aim/goals, research goals.
•	 Analyzed dimensions:

•	 Theory: Theoretical models or conceptual frameworks 
underlying CAD–CAM integration (e.g. systems theory, CPS).

•	 Context: Industrial settings (e.g., automotive, aerospace), 
organizational factors, or sustainability considerations.

•	 Characteristics: Technical features (e.g., AI algorithms, file 
formats) or organizational factors influencing interoperability.

•	 Methodology: Research approaches (e.g., case studies, 
simulations, experiments) and their reported limitations.

•	 Analytical fields: identified gaps, suggested future research 
directions and main findings.

This structured approach enabled both qualitative syntheses, to 
identify thematic trends, theoretical orientations, and methodological 
patterns, and basic quantitative summaries, such as publication year 
distribution and research domain coverage. Data management and 
visualization were supported using Microsoft Excel and Python, 
while Zotero was used for literature organization and InstaText 
assisted in refining the academic writing style. The detailed and 
traceable extraction process supports transparency and replicability 
of the review.

3  RESULTS OF THE SYSTEMATIC LITERATURE REVIEW

This section summarizes the results of the reviewed literature 
on CAD–CAM integration in the context of I4.0 and I5.0. The 
analysis follows standardized framework, to ensure a structured and 
comprehensive review. In addition to presenting the evidence, the 
key patterns, challenges and opportunities are discussed, considering 
the research objectives.

3.1  Overview of Included Studies

This SLR includes a total of 51 peer-reviewed studies published 
between 2002 and 2025. Although the search covered the entire 
period from 2000 to 2025, the earliest relevant study in this period 
was published in 2002. The overview shows the development of 
academic interest in CAD–CAM integration in the context of I4.0 
and I5.0. Figure 1 shows the number of articles and conference 
papers published per year as well as a 3-year moving average trend 
line representing the overall progression of publications.

As can be seen from Fig. 1, the volume of publications remained 
relatively low and stable between 2002 and 2015, averaging around 
one to two publications per year. From 2016 onwards, a modest 
increase can be observed, with more consistent growth after 
2018. The number of studies peaked in 2024 with a total of eight 
publications, indicating increased research attention and relevance of 
CAD–CAM integration in recent years. The 3-year moving average, 
marked with a black dashed line in Fig. 1, confirms this upward trend 
and signals continued momentum in this area.

In terms of dissemination channels, articles dominate the literature 
and account for most publications, while conference papers have also 
gained visibility in recent years, particularly from 2019 onwards. 
This indicates a growing interest in disseminating preliminary or 
applied research results via academic conferences, possibly reflecting 
the increasing pace of technological innovation and industry 
involvement.

Fig. 1.  Annual distribution of articles and conference contributions with a trend line
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3.2  Theoretical Foundations

Integrating theoretical foundations into CAD–CAM research is 
crucial to guide system design, enable model-driven automation and 
ensure scalability across industrial applications. In the era of I4.0 
and more recently I5.0, theory played a central role in aligning smart 
manufacturing technologies with broader technical, organizational 
and societal goals. To evaluate the conceptual basis of current 
research, each study in this review was assessed based on its stated or 
implied theoretical basis. Based on a thematic analysis, the identified 
theories were grouped into six overarching categories, which are 
summarized in Table 1. These categories reflect the main conceptual 
approaches underlying CAD–CAM integration research over the past 
25 years.

Table 1.  Theoretical Foundations in CAD–CAM Integration

Category Description Examples/Applications
ML & AI Use of ML algo­

rithms for prediction, 
classification, or 
optimization tasks

ANN for process modeling [38]
DL for toolpath recognition [39]
RL for CNC control [21]
GANs for toolpath generation[40]

Optimization 
algorithms

Swarm-based and  
evolutionary algo­
rithms applied to 
improve machining 
outcomes

NSGA-II for multi-objective optimization 
[41]
PSO for toolpath adaptation [42]
GA for machining time reduction [43]
GSA for tool selection [44]

Feature/
Knowledge-
Based 
Systems

Utilization of CAD 
features, KBE, and 
rule-based decision 
systems

Feature-based machining [45]
Knowledge-based process planning [45]
CAD/CAM integration for orthopedic/
dental workflows [46]

CPS/Digital 
Twins

Digital representa­
tions of physical 
systems for control 
and maintenance

Digital twins for predictive maintenance 
[47]
Multi-agent systems [48]
CPS for smart manufacturing [49]

High-Level 
Programming 
/ Standards

Abstractions of 
low-level CNC code 
through semantic 
frameworks

STEP-NC for feature-based programming 
[50]
Modular robotic machining [51]
AM programming standards [52]

Geometric / 
Mathematical 
models

Theories improving 
geometric modeling 
and toolpath 
accuracy

Voxelization for complex surfaces [53]
Adaptive isocurves [54]
FRep for CAD/CAM correctness [55]

Taken together, these six categories reflect the various theoretical 
foundations that have shaped research into CAD–CAM integration. 
In practice, these theoretical categories often merge into hybrid 
approaches. For instance, ML methods such as artificial neural 
networks (ANNs) and generative adversarial networks (GANs) 

are used to enhance CPS and digital twins by predicting toolpaths. 
Similarly, knowledge-based engineering (KBE) frameworks integrate 
with high-level standards like STEP-NC (a semantic computer 
navigated control (CNC programming protocol) to support feature-
driven toolpath generation. Optimization approaches like non-
dominated sorting genetic algorithms (NSGA-II), particle swarm 
optimization (PSO), and gravitational search algorithms (GSA) are 
widely used for machining parameter tuning. Geometric modeling 
concepts such as function representation (FRep) and voxel-based 
techniques further reinforce CAD–CAM correctness and accuracy. 
Such synergies reinforce the impact of each theory and promote 
innovative CAD–CAM solutions tailored to I4.0 and I5.0 demands. 
These foundations also overlap with I5.0’s focus on human-
centeredness, sustainability and resilience. ML and AI support 
sustainability through predictive maintenance that reduces waste, 
while CPS improve resilience by enabling adaptive manufacturing 
systems. However, the limited presence of human-centered theories, 
such as cognitive ergonomics or socio-technical systems, suggests 
that CAD–CAM research has not yet fully embraced I5.0’s focus 
on human–machine collaboration, indicating a potential area for 
theoretical expansion. These categories reflect the main conceptual 
approaches underlying CAD–CAM integration research over the past 
25 years, and their temporal distribution is illustrated in Fig. 2.

3.3  Application Contexts

The studies examined were conducted in a variety of industrial, 
technical and organizational contexts, reflecting the broad 
applicability of CAD–CAM integration solutions. Analyzing the 
contextual focus of the individual studies provides insight into where 
and how such technologies are used and tested. Based on the content 
analysis, three main dimensions were identified: industry domains, 
enterprise types, and technological environments, each depicting 
unique facets of application environments. These are summarized in 
Table 2.

While Table 2 summarizes the three primary contextual 
dimensions (industry domain, enterprise type, and technological 
environment) it is also important to recognize several recurring 
challenges in CAD–CAM integration identified across the reviewed 
studies. 

In this context, computer aided process planning (CAPP) systems 
play a pivotal role in bridging the gap between CAD and CAM. 
The reviewed studies include manual programming inefficiencies, 
such as time-consuming G-code authoring and limited reusability 
of strategies [58]; discontinuities in CAD–CAM-CNC integration, 
where data loss or misalignment occurs between design, planning, 
and execution stages [40]; and a lack of feedback and adaptivity, 

Fig. 2.  Annual distribution of studies by theoretical category, with legend showing overall category share
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reflected in the absence of closed-loop control or learning capabilities 
in conventional systems [62].

Toolpath optimization is the most prominent technical theme, 
appearing in over 40 % of the reviewed studies. It reflects the 
ongoing challenge of generating efficient and adaptable machining 
paths, often in connection with precision manufacturing, AI-driven 
planning, and CNC automation—key elements of I4.0.

Table 2.  Application contexts of CAD–CAM integration by dimensions

Dimension Category / Focus area Description / Notes

Industry 
domains

Aerospace, Automotive, 
Tooling, Die/Mold, 
Medical, Dental, Orthotics, 
Micromachining

Common use cases include 5-axis 
machining, dental restoration, 
orthotic insole production, etc. 
[10,46,56]

Precision manufacturing
Focused on toolpath accuracy, 
freeform surface machining, CNC 
optimization [54]

Enterprise 
type

Large enterprises/labs
Advanced CNC setups, digital twins, 
robotic systems, smart factories [50]

Small & medium 
enterprises (SMEs)

Rapid tooling, low-batch 
manufacturing, focus on ease of 
setup and cost-effectiveness [57]

Technol­
ogical 
environ­
ments

Traditional CAM 
environments

Focused on automating or enhancing 
legacy workflows (e.g., manual 
G-code, static toolpaths) [58]

Integrated CAD, CAM, CAE, 
CAPP systems

Studies leveraging interconnected 
design and manufacturing toolchains 
[59]

High-level programming 
(e.g., STEP-NC)

Transition from G-code to semantic, 
feature-based CNC programming [60]

Cloud-based/Adaptive 
systems

Real-time optimization, digital 
threads, feedback control, intelligent 
machining [61]

The rise of cloud-based platforms, digital twins, and adaptive 
control further supports I4.0 goals of connectivity, flexibility, and 
real-time responsiveness.

Conversely, applications in dental and orthopedic manufacturing 
reflect I5.0 priorities, such as personalization and human–machine 
collaboration. Attention to SMEs also signals a push toward 
accessible and scalable CAD–CAM solutions. Finally, interest in 
high-level programming models like STEP-NC marks a shift from 
rigid G-code to more semantic and interoperable approaches.

3.4  Characteristics of CAD–CAM Integration

The studies examined present a wide range of technical features 
and architectural implementations designed to improve CAD–CAM 
integration in the context of I4.0 and I5.0. This section analyzes 
the functional and technological features reported in the selected 
literature, focusing on how the integration is realized, what types 
of automation are implemented and what elements contribute to the 
adaptability, intelligence and efficiency of the system.

To structure this analysis, the features have been grouped into six 
overarching themes based on their core function and implementation 
strategy: AI and ML, toolpath optimization, feature recognition 
and CAD parsing, real-time systems and feedback, data models & 
interoperability, and hybrid/integrated architectures. Table 3 provides 
a summary of the distribution of studies across these thematic 
categories, along with a selection of representative examples and 
methodologies that highlight key developments within each group.

The distribution of studies reflects the field’s prioritization of AI-
driven automation and computational optimization to address CAD–
CAM integration challenges. The dominance of AI & ML (31.4 %) 

and Toolpath optimization (23.5 %) highlights a strong focus on 
intelligent, adaptive systems capable of self-learning and real-time 
decision-making. For instance, optimization techniques such as self-
supervised DL and evolutionary optimization are increasingly used to 
automate toolpath generation and process parameter tuning, reducing 
reliance on manual interventions.

Table 3.  Distribution of representative studies across CAD–CAM integration characteristics

Characteristic 
theme

Description
Share of 
studies

AI & ML

Self-supervised DL with voxel-based RNNs [58]
ANN for adaptive toolpath generation [38]
Evolutionary optimization & simulation models [41]
Contrastive self-supervision for feature 
segmentation [63]

31.4 %  
16 studies

Toolpath 
optimization

Voxelization, and B-spline interpolation for smooth 
toolpaths [64]
Deep graph RL for adaptive toolpath optimization 
[59]
Evolutionary algorithms for parameter optimization 
[44]
PSO variants for tool movement constraints [42]

23.5 %  
12 studies

Hybrid/
integrated 
architectures

Semi-automated Matlab for trajectory analysis [56]
Strategic frameworks for integrated manufacturing 
[60]

25.5 %  
13 studies

Feature 
recognition & 
CAD parsing

STL (stereolitography)-based feature extraction & 
segmentation [65]
DNN on structured descriptors [39]

7.8 %  
4 studies

Real-Time 
systems & 
feedback

RL model for toolpath control [66]
3D vision for adaptive monitoring [61]

5.9 %  
3 studies

Data models 
& inter­
operability

FRep–based CAD/CAM with topology optimization 
[55]
Object oriented model for NC programming [67]

5.9 %  
3 studies

Meanwhile, Hybrid/integrated architectures (25.5 %) demonstrate 
efforts to unify design, simulation, and execution through 
frameworks like STEP-NC and MATLAB-based tools, reflecting 
I4.0’s emphasis on CPS integration. However, underrepresented 
themes such as feature recognition & CAD parsing (7.8 %) and 
data models & interoperability (5.9 %) signal gaps in addressing 
persistent challenges like dynamic CAD data translation and system 
interoperability. Similarly, the limited focus on real-time systems & 
feedback (5.9 %) underscores the need for more empirical validation 
of adaptive monitoring and control mechanisms in physical 
machining environments.

3.5  Research Methodologies

The methodological foundations of the reviewed studies highlight the 
interdisciplinary approaches to CAD–CAM integration, reflecting the 
field’s experimental and computational complexity. Five overarching 
methodological categories emerged from the analysis (Table 4): 
(1) AI and ML modeling, (2) simulations and algorithm validation, 
(3) STEP-NC and CPS system development, (4) experimental 
machining, and (5) reviews and analytical contributions. Table 4 
summarizes these approaches, their key techniques, applications, and 
representative references.

AI and ML Modeling dominate the field, accounting for 49 % of 
studies (Figure 3). These works employ various DL architectures, 
such as ANN, CNN, RL, and generative models. Applications include 
intelligent toolpath generation, feature recognition, and adaptive 
machining, underscoring the transformative role of data-driven 
intelligence in automating and optimizing digital manufacturing 
processes. Simulations and algorithm validation represent 21.6 % 
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of methodologies. Techniques like PSO and numerical simulations 
are widely used to validate toolpath strategies, cutting parameters, 
and process control systems in virtual environments. These 
approaches reduce reliance on physical prototyping by enabling 
pre-testing of computational models. STEP-NC, CPS, and system 
development (17.6 % of studies) focus on advancing interoperability 
in manufacturing systems. Innovations include plug-and-produce 
automation frameworks, machine-interpretable NC code standards, 
and architectures validated in industrial robotic environments. 
These efforts aim to bridge gaps between design and execution 
phases in CAD–CAM workflows. Experimental machining  (5.9% 
of studies) emphasizes practical validation through CNC machine 
testing, toolpath design, and process reliability analysis. While 
underrepresented, these works provide critical insights into the 
physical realities of CAM execution, such as parameter tuning 
and material behavior. Reviews and analytical contributions  (5.9 
%) remain scarce, highlighting a gap in meta-level synthesis and 
theoretical frameworks. Structured reviews and interdisciplinary 
conceptual models are needed to unify fragmented advancements and 
establish robust benchmarks for future research.

Table 4.  Overview of methodological approaches in CAD–CAM integration

Research 
approach

Key techniques/
methods

Example applications Refs.

AI and ML 
modeling

DL architectures 
(ANN,CNN, RL), 
regression, generative 
models

Intelligent toolpath 
generation, feature 
recognition, adaptive 
machining

[20–22,30, 
67,69,70, 
73,74]

Simulations 
and algorithm 
validation

PSO, GA, GSA, 
numerical simulations

Validating toolpath strate­
gies, cutting parameters, 
process control systems 
in virtual environments

[42,44,55, 
68,69]

STEP-NC, 
CPS, system 
development

New system archi­
tectures, plug-and-
produce frameworks, 
machine-interpretable 
NC code standards

Industrial/robotic 
machining environments

[47–52,70]

Experimental 
machining

Practical testing 
of CNC machines, 
toolpath design, 
process reliability

Physical realities of CAM 
execution, parameter 
tuning

[53,64,71]

Reviews, 
conceptual, 
and analytical 
contributions

Structured reviews, 
benchmarking 
frameworks, 
interdisciplinary 
conceptual models

Meta-level synthesis, 
theoretical framework 
development

[57]

4  DISCUSSION

This SLR synthesizes more than two decades of research on CAD–
CAM integration and intelligent toolpath generation through 
the TCCM framework. The results reveal an evolution from the 
automation-focused strategies of I4.0 toward I5.0’s emphasis on 
human-centric and sustainable manufacturing. This transition mirrors 
wider industrial and societal demands for inclusivity, adaptability, 
and environmental accountability in production systems.

AI and ML dominate the theoretical foundations, underpinning 
advances in feature recognition, adaptive toolpath planning, and 
predictive maintenance. However, theoretical models incorporating 
human factors, socio-technical interaction, and sustainability are 
scarce, limiting alignment with I5.0 principles. While CPS and digital 
twins offer strong potential for feedback-driven manufacturing, their 
industrial deployment remains limited, signaling a gap between 
conceptual readiness and real-world integration.

From an application standpoint, adoption is concentrated in high-
precision industries, where geometric complexity and customization 
needs justify investment in intelligent CAD–CAM workflows. 
Although SMEs show growing interest, financial constraints, 
workforce training needs, and integration barriers hinder uptake. This 
calls for solutions that are scalable, cost-effective, and compatible 
with diverse industrial infrastructures. Cloud-based adaptive systems 
and STEP-NC offer viable alternatives to conventional workflows, 
but persistent interoperability issues slow adoption.

Technologically, AI-driven automation and optimization dominate 
CAD–CAM integration, with precision and efficiency as central 
objectives. Yet, unresolved interoperability challenges (rooted in 
fragmented data standards, proprietary formats, and insufficient 
CAD–CAM–CNC integration) limit seamless workflows. 
Sustainability-focused innovations, such as material efficiency 
and energy optimization, are increasing but remain secondary to 
automation goals, indicating the need to embed environmental 
metrics into core CAD–CAM strategies.

Methodologically, the literature is led by AI/ML-based modeling, 
followed by simulation-based validation and fewer experimental 
studies. While virtual and data-driven approaches accelerate design 
cycles, the lack of experimental verification, standardized datasets, 
and consistent reporting weakens reproducibility and comparability. 
Combining physical and virtual validation, and establishing shared 
benchmarks, would improve industrial credibility and scalability.

Key gaps persist across all TCCM dimensions: the shortage of 
large, validated datasets; difficulties in freeform surface recognition; 
limited cross-domain model generalizability; and the lack of robust 
solutions for real-time toolpath adaptation and force control. 
The slow adoption of STEP-NC, coupled with cybersecurity and 

Fig. 3.  Yearly distribution of studies by research methodology
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interoperability constraints, particularly affects SMEs and restricts 
the scalability of advanced CAD–CAM solutions.

Addressing these gaps will require coordinated research and 
development efforts across four strategic areas:
1.	 Comprehensive, annotated, multimodal datasets. Datasets that 

integrate geometry, process parameters, sensor streams, and 
toolpath data are essential for developing robust AI models and 
achieving semantic interoperability through asset administration 
shells. However, most current studies depend on limited 
or proprietary datasets, which hampers reproducibility and 
scalability. Progress is constrained by the absence of standardized 
formats, low data variability, and intellectual property concerns. 
Advancing the field will require open-access repositories, 
harmonized CAD/CAM–sensor datasets, and the use of synthetic 
data generation to broaden coverage while safeguarding sensitive 
information.

2.	 Interpretable, transferable, and robust AI algorithms. Developing 
AI algorithms that combine interpretability, cross-domain 
transferability, and operational robustness is crucial for advancing 
CAD–CAM integration. Hybrid approaches that merge geometric 
reasoning methods (e.g., voxelization) with simulation-informed 
training and adaptive control can help bridge the gap between 
virtual optimization and real-world execution. However, many 
existing models remain opaque and narrowly specialized, 
which limits trust, adaptability, and scalability. Progress will 
depend on the adoption of explainable AI techniques, domain-
adaptive learning strategies, and open-source, modular plug-
and-play toolkits to facilitate seamless integration into diverse 
manufacturing environments.

3.	 Practical implementation of standards. Effective CAD–CAM 
integration depends on adopting and operationalizing existing 
yet underutilized standards such as STEP-NC and OPC UA [72]. 
These can be supported through middleware and integration 
layers that ensure compatibility across heterogeneous systems, 
enabling consistent data flow between design, manufacturing, and 
monitoring environments. Harmonizing communication protocols 
for Human–Machine Interfaces (HMIs) is equally critical. 
Advancing this area will require collaborative standard adoption, 
vendor-neutral integration solutions, and industry-wide alignment 
on interface and protocol specifications.

4.	 Human-centered interfaces. Human-centered interfaces should 
be designed to enhance operator capabilities, aligning CAD–
CAM integration with I5.0’s collaborative, ethical, and inclusive 
principles. In this context, inclusive technologies refer to solutions 
that are accessible across different operator skill levels, adaptable 
to diverse manufacturing environments (including SMEs), and 
interoperable with heterogeneous hardware and software systems. 
Human-centered interfaces will be used as guidelines, which 
should include:
•	 Operator-focused interaction tools – Use visual dashboards, 

voice-enabled assistants, and intelligent HMIs to improve 
situational awareness, support explainable AI decisions, and 
allow timely manual intervention.

•	 Integration of advanced LLMs – Incorporate well-known large 
language models such as GPT-5, LLaMA 3, Claude, and Grok-
4 to enable multilingual natural language interaction, real-time 
troubleshooting, and automated code or G-code optimization.

•	 Design engineer practices – Provide structured 3D models 
with standardized representations (e.g., B-rep, STEP-NC) and 
embedded machining metadata to ensure smooth downstream 
use in CAM and HMI systems.

•	 Usability, transparency, and adaptability – Maintain operator 
engagement as active decision-makers, fostering trust and 

effective human – machine collaboration while ensuring 
scalability from small workshops to large enterprises.

5  CONCLUSIONS

Over the past two decades, CAD–CAM integration has advanced 
significantly within the I4.0 and I5.0 paradigms, evolving from 
automation-focused solutions toward more adaptive, sustainable, 
and collaborative manufacturing systems. The systematic mapping 
provided by this review clarifies the field’s theoretical foundations, 
application contexts, technical innovations, and methodological 
practices, highlighting where progress has been made and where 
critical work remains. Key strategic directions emerging from this 
synthesis include:
•	 Bridging research–practice divides by embedding socio-technical 

and sustainability considerations directly into CAD–CAM 
solutions, ensuring they are deployable in diverse industrial 
contexts.

•	 Expanding accessibility through scalable, cost-effective 
integration strategies that address SME-specific constraints 
without sacrificing interoperability or performance.

•	 Embedding sustainability as a core metric alongside productivity 
and precision, ensuring material efficiency, energy optimization, 
and lifecycle awareness in CAD–CAM workflows.

•	 Leveraging advanced AI and standards (interpretable models, 
STEP-NC, and OPC UA) to enable adaptive, interoperable, and 
future-proof manufacturing ecosystems.

While this review focuses on peer-reviewed literature, future 
studies should combine industrial case evidence with academic 
research to capture region-specific practices, operational constraints, 
and emerging innovations. Addressing these priorities will 
accelerate the transition toward manufacturing systems that are not 
only technologically advanced, but also inclusive, resilient, and 
environmentally responsible—fully embodying the collaborative 
ethos of I5.0.
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Inteligentno generiranje poti orodja:  
sistematični pregled integracije CAD–CAM v Industriji 4.0 in 5.0

Povzetek  Pregled literature raziskuje napredek na področju integracije 
računalniško podprtega konstruiranja in računalniško podprte proizvodnje 
(CAD–CAM) ter generiranja poti orodja, pri čemer analizira razvoj v okviru 
Industrije 4.0 in Industrije 5.0 (I5.0). S pomočjo pristopa po teoriji–kontekstu–
značilnostih–metodologiji (TCCM) študija sintetizira 51 recenziranih raziskav 
(v obdobju 2000–2025) ter analizira teoretične osnove, industrijske 
aplikacije, tehnične inovacije in metodološke trende. Ugotovitve razkrivajo, 
da raziskave močno zaznamujejo umetna inteligenca (UI) in strojno učenje, 
ki poganjata preboje na področju prepoznavanja značilnosti, adaptivne 
optimizacije poti orodja in napovednega vzdrževanja. Vendar pa človeško-
usmerjene rešitve, ki so osrednjega pomena za I5.0, kot je sociotehnično 
sodelovanje, ostajajo premalo raziskana. Panoge z visoko natančnostjo 
(letalska in vesoljska, biomedicinska) vodijo pri uvajanju, medtem ko mala 
in srednja podjetja (MSP) zaostajajo zaradi omejenih virov. S tehnološkega 
vidika obetajo avtomatizacija, ki temelji na UI in standardi STEP-NC, a vrzeli 
v interoperabilnosti ostajajo zaradi razdrobljenih podatkovnih modelov in 
zastarelih sistemov. Metodološko prevladuje modeliranje na osnovi UI (49 % 
raziskav), eksperimentalna validacija in sociotehnična ogrodja pa ostajata 
redka. Ključne vrzeli, ki so bile zaznane v študiji, vključujejo omejeno sprotno 
prilagodljivost, pomanjkanje zadostnih učnih podatkovnih zbirk za učenje 
modelov UI, ter počasno uvajanje trajnostnih praks. Pregled poudarja nujnost 
standardiziranih protokolov za izmenjavo podatkov, razširljivih rešitev za 
malo serijsko proizvodnjo ter razvoj modelov sodelovanja med človekom in 
UI, ki bi CAD–CAM integracijo uskladili s trajnostnimi in odpornimi cilji I5.0. Z 
odpravljanjem teh vrzeli prispeva pregled k oblikovanju načrta za napredno, 
inteligentno in človeku usmerjeno proizvodno okolje.

Ključne besede  CAD–CAM integracija, Industrija 4.0, Industrija 5.0, 
optimizacija poti orodja, umetna inteligenca (UI), teorija–kontekst–
značilnosti–metodologija (TCCM)
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