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Abstract  This paper presents numerical solving of the inverse bioheat problem to estimate four skin cancer parameters; diameter, thickness, blood perfusion 
rate and thermal relaxation time, based on the thermal response on the skin surface obtained by dynamic thermography and numerical skin cancer model, 
which can greatly enhance dynamic thermography diagnostics. To describe the heat transfer inside biological tissue and thermal behavior during the dynamic 
thermography process as realistic as possible, the non-Fourier dual-phase-lag bioheat model was used, as well as skin cancer model has been composed of 
multilayered healthy skin, embedded skin tumor and subcutaneous fat and muscle. Boundary element method has been used to solve a complex non-Fourier 
bioheat model to simulate dynamic thermography based on the skin cancer model and guessed searched parameters to obtain the thermal response on the 
skin surface during the cooling and rewarming phase using a cold air jet provocation, which is needed for the solution of the inverse bioheat problem. The 
inverse problem has been solved by optimization approach using the hybrid Levenberg-Marquardt optimization method, while the measurement data has been 
generated numerically with known exact tumor parameters and added noise, to evaluate the accuracy and sensitivity of the solution. Inverse problem solution 
has been tested for two different thermal responses; absolute temperature and temperature difference response, as well as for two different tumor stages; 
early stage or Clark II and later stage or Clark IV tumor. All important tumor parameters were successfully retrieved, especially the diameter and relaxation time, 
even for the high level of noise, while the accuracy of obtained parameters is slightly better using absolute temperature response. The results demonstrate the 
robustness of the method and a promising way for early diagnosis. The findings contribute to improving bioheat modeling in biological tissues, solving inverse 
bioheat problems and advancing dynamic thermography as a non-invasive tool for early skin cancer diagnosis.

Key words  numerical modeling, dynamic thermography, inverse problem, non-Fourier bioheat transfer, dual-phase-lag model, boundary element method, 
Levenberg-Marquardt optimization

Highlights
	▪ Non-Fourier dual-phase-lag model improves the heat transfer simulation in skin cancer.
	▪ Dynamic thermography with cold air jet detects tumors during cooling and rewarming.
	▪ Levenberg–Marquardt algorithm estimates tumor diameter, thickness, perfusion rate, and relaxation time.
	▪ Tumor parameters are estimated robustly even with high noise in thermography temperature data.

1  INTRODUCTION

In recent years due to the development of infrared (IR) cameras, 
thermography has become an invaluable tool in science and 
engineering for many heat transfer problems and applications where 
measuring or monitoring of the temperature is important. IR camera 
detects thermal radiation emitted from the observed object, which 
is then converted into electrical signals to produce thermal images 
or thermograms. The advantage of this technique is that it measures 
or records the temperature in a contactless manner for the observed 
object compared to a thermocouple, which must be in direct contact 
and measures only at one point [1–3]. Of course, the disadvantage of 
it is that it can only measure the temperature at the surface and you 
have to accurately define various parameters like the emissivity of the 
surface, surrounding temperature, relative humidity etc. to measure 
surface temperature accurately in an absolute manner. However, 
the obtained thermal image can still be used in the relative manner, 
meaning that thermography is mostly used and effective to detect 
temperature changes based on the recorded temperature contrast of 
the object surface for various scientific and industrial applications 
[2,4–7]. For its advantage of recording thermal contrast image in non-
invasive manner and the ability to screen larger areas it also found 
its way in various medical application from diagnostic of breast 

cancer, gynecology, kidney transplantation, heart treatment, fever 
screening, brain imaging, dentistry, cryotherapy, forensic medicine, 
laser treatments, burn diagnostics to dermatology [8–17].

Medical IR thermography is based on the principle of bioheat 
transfer govern by blood perfusion, metabolic activity, tissue 
conductivity and heat exchange with the environment. Therefore, 
a physiological or pathological change of the tissue is reflected 
in the change of the tissue temperature or thermal contrast on its 
surface that can be easily observed with the IR camera. Therefore, 
the deviation of the surface temperature can signal inflammation, 
infection, neurological, vascular or metabolic dysfunction and even 
malignancy due to the higher blood perfusion rate compared to the 
surrounding healthy tissue [2,8,18–20]. Thermography is especially 
effective in detecting lesions near tissue surface, like skin cancer. 
Skin cancer cells differ from normal cells by growing larger due to 
their rapid and uncontrolled division. This fast-paced growth requires 
more energy to maintain cellular functions, a process referred to 
as metabolism. To meet this increased energy demand, the body 
initiates angiogenesis, where new blood vessels form from existing 
ones. Melanoma lesions are, therefore, warmer than the surrounding 
healthy skin, a key indicator used in diagnostic [21–24]. Because 
medical IR thermography can identify small temperature differences, 
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it can also detect the growth of new blood vessels or metabolic 
changes associated with tumor development meaning it can also 
be a valuable tool for drug or treatment evaluation [25]. The most 
dangerous form of skin cancer is melanoma that can easily spread to 
other soft tissues, for which is fatal and responsible for about 75 % 
of all skin cancer-related deaths [18]. According to Clark et al. [26] 
and Breslow [27], there is a direct correlation between the survival 
rate and invasiveness or depth of the melanoma. Clark classified 
melanoma into five levels from I to V, which is still used nowadays. 
Clark I and II represent an early stage with more than 72.2 % survival 
rate, for which an early detection or diagnostic is very important 
factor to improve the survival in patients with malignant melanoma 
[26].

Currently, the detection of melanoma mainly relies on a subjective 
asymmetry, border, color, diameter, evolution (ABCDE) test [28] 
performed visually by dermatologists, general practitioners or primary 
care physicians. The ABCDE test provides a qualitative guideline, and 
it requires a trained specialist to distinguish malignant lesions from 
benign nevi. Moreover, the ABCDE approach has a relatively high 
false-alarm probability and moderate detection probability [29]. Since 
a false negative can lead to metastasis and death, excisional biopsies 
are routinely performed even on lesions that are non-cancerous [30]. 
For these reasons, medical IR thermography, especially dynamic 
thermography, is an emerging promising new technique offering a 
fast, painless, non-invasive and radiation-free method for early skin 
cancer diagnosis with high sensitivity and specificity that can achieve 
rates of up to 99 % [2,18,31].

Medical IR thermography can be done in two ways, first as a static 
or passive and secondly as dynamic or active thermography. Static 
thermography obtains the thermal contrast image or thermograms 
of the skin or tissue under the steady-state condition, while dynamic 
thermography uses thermal stimulus of the tissue by controlled 
cooling or heating and observing thermal response of the tissue during 
the recovery period [17–19,31–34]. Static thermography relies on the 
natural temperature difference between a tissue and its surroundings, 
with focus on detection of abnormal temperature variations, which 
may indicate underlying health concerns. Despite being the most 
used measurement strategy, it is in certain ways limited. Factors 
such as bone structure, distribution of blood vessels, recent food or 
beverage intake, patient positioning, time of day and hormonal cycles 
can all affect accuracy of this measurement strategy [17,31,35,36]. 
Feasibility in routine medical practice is further reduced by strict 
measurement protocols that have been proposed and the need for 
temperature-controlled rooms where the patient has to acclimatize 
[17,37]. On the other hand, dynamic thermography can provide 
quantitative data about investigated tissue, by transient behavior of 
the tissue due to the thermal stimulus and increased thermal contrast 
due to the changed rate of bioheat transfer during recovery phase. 
There are also various ways of stimulating the observed tissue, some 
of them using conductive heat transfer, electromagnetic radiation 
or convective heat transfer [17,31]. The most common used thermal 
stimulus is cooling the tissue with cold gel packs or cold metal disk 
[19,38–40], and convection cooling using cold air jets [18,33,41]. 
Research shows that dynamic thermography has multiple advantages 
over static one. First, the temperature contrast during the recovery 
phase is increased, making the diagnostic process more accurate, 
as well as more information about the tissue properties or deep 
lesion can be retrieved. Secondly, there is no need for the patient to 
acclimatize or to have a special temperature-controlled room, making 
the examination period much shorter [17–19,29,31].

Focusing on skin cancer or skin disease diagnosis, medical IR 
thermography can reach its full diagnostic value potential when paired 
with accurate bioheat modeling to solve direct and inverse problems 

[20,42–45]. Strąkowska et al. [19,20] uses simplified one-dimensional 
(1D) multilayered skin model to evaluate blood perfusion rate and 
thermal parameters of the skin tissue based on the temperature 
response of active thermography. Luna et al. [46] used a simple 2D 
numerical model composed of tumor and healthy surrounding skin 
to identify thickness and blood perfusion rate of the tumor based on 
the static thermography information. Similar model has been used by 
Partridge and Wrobel [47,48] to estimate blood perfusion parameters 
of the skin tumor, size and position using steady-state skin temperature 
profile, as well as, Fu et al. [49] to estimate the size and position of 
the circular tumor or multiple tumors using meshless generalized 
finite difference method combined with a hybrid optimization 
algorithm. Bhowmik and Repaka [42] upgraded the skin cancer 
model to 3D multilayered one to estimate tumor diameter, thickness, 
blood perfusion rate and metabolic heat generation. Bhowmink et al. 
[50] also included thermally significant blood vessels into their 3D 
multilayered skin tumor model to evaluate the effect of blood vessels 
on finding the position and size of the tumor. Cheng and Herman 
[43] used simplified 2D multilayered skin tumor model to investigate 
numerically what type of cooling approach would give the highest 
temperature contrast between the skin tumor and healthy skin during 
the recovery phase of dynamic thermography. Çetingül and Herman 
[33,44] used a more realistic 3D multilayered skin lesion model to 
evaluate model parameter and tumor shape sensitivity on dynamic 
thermography temperature contrast. Similar model has also been 
used by Bonmarin and Gal [51] on investigating lock-in dynamic 
thermography for detection of early-stage melanoma, as well as 
Iljaž et al. [52] to solve inverse bioheat problem to evaluate tumor 
size, blood perfusion rate and metabolic heat generation based on 
dynamic thermography thermal contrast. Later they improve the skin 
tumor model by including thermoregulation of the blood perfusion 
rate to simulate dynamic thermography [53] and solve inverse 
bioheat problem to evaluate several tumor parameters [45]. All the 
mentioned models to supplement dynamic or static thermography are 
based on the Pennes bioheat model that has significant limitations, 
including the assumption of uniform blood perfusion, the neglect 
of blood flow direction and countercurrent heat exchange, and the 
treatment of arterial blood as a constant value [54]. A major drawback 
of the Pennes model is the assumption of infinite heat propagation 
speed, which disregards thermal lag effects that become critical in 
conditions with large heat fluxes in a relatively short period of time 
especially in inhomogeneous biological structures [55–59]. In those 
scenarios, Fourier-based bioheat models generally tend to fail in fully 
capturing the process of heat propagation.

To address the limitations of traditional bioheat transfer models, 
non-Fourier models have been developed to account for thermal lag 
and microscale heat transfer effects. Maybe the most important non-
Fourier bioheat model is the dual-phase-lag (DPL) model [60,61] 
introducing a relaxation time for heat flux and temperature gradient 
and has been used in many bioheat transfer applications, like laser 
irradiation during hyperthermia treatment, brain tissue heating 
during laser ablation and nano-cryosurgery [62–64]. DPL model can 
describe more complex bioheat transfer considering many effects 
that classical Pennes model cannot describe, however, it has not been 
used so extensively due to the hyperbolic behavior of the model and 
its complexity to solve it numerically, as well as unknown tissue 
relaxation times. The most important research has been done by Liu 
and Chen [65] investigated the DPL model in a bi-layer spherical 
tissue domain, using experimental data to estimate relaxation times 
and demonstrating that the DPL model better captures non-Fourier 
thermal behavior compared to classical bioheat transfer models, 
particularly in scenarios involving rapid thermal processes and 
finite thermal wave propagation. Similar Zhang et al. [66] used 
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the DPL model to study non-Fourier heat conduction in biological 
tissues during pulsed laser irradiation. Kishore and Kumar [67] 
tried to estimate thermal relaxation parameters numerically in laser-
irradiated living tissue. All these papers still use very simple tissue 
models, usually composed out of single or double layer as 1D or 3D 
axisymmetric problem and constant thermal relaxation parameters.

The literature review highlights that most existing thermography-
based skin cancer models rely on the classical Pennes bioheat 
equation, which assumes uniform perfusion, constant arterial 
conditions, and infinite heat propagation speed. Such assumptions 
neglect tissue heterogeneity, blood flow direction, and thermal lag, 
leading to limitations when modeling rapid transient processes in 
multilayered biological tissues. Although the non-Fourier dual-phase-
lag bioheat model has been introduced in other biomedical contexts, 
it has not been extensively applied to skin cancer thermography, 
particularly for inverse problem formulations and the estimation of 
multiple tumor parameters in realistic geometries.

In this study, these gaps are addressed by applying a non-Fourier 
dual-phase-lag bioheat model in an axisymmetric multilayered skin 
tumor domain and formulating the inverse problem using a boundary 
element method solver combined with a Levenberg–Marquardt 
optimization approach. The paper is organized as follows: Section 
2 introduces the model geometry, governing equations, boundary 
conditions, and numerical implementation, as well as describes the 
inverse problem formulation and optimization framework. Section 
3 presents the results and discussion, and Section 4 concludes the 
work with key findings. Overall, this work contributes to the field 
of mechanical engineering by advancing thermal modeling of 
heterogeneous biological tissues and providing a more rigorous 
framework for non-invasive diagnostics using dynamic thermography.

2  METHODS AND MATERIALS

2.1  Skin Cancer Model

An axisymmetric multilayered numerical model of skin cancer is 
developed based on our previous work [45,53,68], work of Çetingül 
and Herman [44], Cheng and Herman [43] and Bhowmik and Repaka 
[42]. The novelty here is that the model uses non-Fourier DPL 
bioheat governing equation proposed by Tzou in 1990 [60] making 
it more general and adapted to the complex bioheat behavior, tissue 
non-homogeneity and other effects by adjusting the relaxation 
time parameter. The model presented here is used for dynamic 
thermography simulation by getting the tumor thermal response.

The most common thermal stimulus for dynamic thermography 
is cooling the tissue by applying cold gel packs, metal blocks, water 
immersion, alcohol sprays and even Peltier devices to control the 
cooling temperature [17,19,38,39,69,70]. The disadvantage of these 
cooling techniques is that we cannot monitor or record the thermal 
contrast or response during the cooling period, which can give us 
additional information about the investigated tissue [68]. Therefore, 
in this paper we are proposing to use convective cooling approach 
by temperature adjustable airflow like Ranque-Hilsch vortex tube 
[18,41]. This way, we can monitor thermal response of the tissue 
during the cooling and rewarming period of dynamic thermography 
revealing more information about the investigated tissue, which is 
needed for successful solving of the inverse problem.

2.1.1  Geometry

Skin cancer model is composed of six distinct layers, each with its 
own thermophysical properties; epidermis, papillary dermis and 
reticular dermis representing the skin, subcutaneous fat, muscle 
and tumor, making model more realistic. Çetingül and Herman 

[44] concluded that the shape of the tumor has little effect on the 
temperature response on the skin surface during the rewarming 
period and that most important parameters are average volume and 
thickness. Therefore, the tumor is represented by cylindrical shape 
where diameter and thickness represent its effective values. The 
surrounding healthy tissue has also been modeled with cylindrical 
shape with the lesion in the center, as can be seen from Fig. 1 
showing the whole computational domain of the model. Because of 
the cylindrical geometry of the domain and skin tumor, as well as 
adiabatic boundary conditions at the side, the bioheat problem has 
been treated as an axisymmetric one. This reduces the computational 
cost due to the computational mesh dimension reduction, which is 
very important for inverse problem solving. Discretization of an 
axisymmetric computational domain needed for the numerical 
simulation, is therefore done with only 2D cross sectional 
discretization along the rotational axis, as shown in Fig. 2. This 
drastically reduces the number of computational elements and nodes, 
speeding up the computational time.

The dimension of the tumor for Clark II and Clark IV has 
been chosen based on our previous work [45,52,68] and for both 
examples are gathered in Table 1 together with the layer thicknesses 
that have been taken from [42–45,53]. The size of computational 
domain diameter D has been evaluated based on the comparison of 
temperature contrast from the dynamic thermography simulation, 
aiming to reduce the effect of adiabatic boundary conditions at the 
side. The appropriate and chosen domain diameter is D = 40 mm, 
while the height of the skin model is the sum of the heights of all 
layers and is H = 11.6 mm.

2.1.2  Non-Fourier DPL Model

In the wave theory of heat conduction, the heat flux and the 
temperature gradient, are assumed to occur at different times. 
In 1990, Tzou [60] introduced the DPL model with the aim of 
eliminating the precedence assumption in the Cattaneo–Vernotte 
model. It allows either the temperature gradient (cause) to precede the 
heat flux (effect) or the heat flux (cause) to precede the temperature 
gradient (effect) in the transient process. This can be mathematically 
represented by [60]:

q r r, , ,t T tq T�� � � � � �� �� � � 	 (1)
where q is the heat flux, r an arbitrary space vector, t the physical 
time, λ the thermal conductivity, T = T(r,t) the temperature, ∇ is 
the nabla operator, τq relaxation time of the heat flux and τT is the 
relaxation of the temperature gradient. Relaxation time of the 
heat flux can be also written as τq = α/C2, where α is the thermal 
diffusivity and C the thermal wave speed. For the case of τT >   τq, the 
temperature gradient established across a material domain is a result 
of the heat flux, implying that the heat flux vector is the cause and the 
temperature gradient is the effect. For τT < τq, heat flux is induced by 
the temperature gradient established at an earlier time, implying that 
the temperature gradient is the cause, while the heat flux is the effect.

In a local energy balance, the energy conservation of bioheat 
transfer is described as [71]:

�� � � � � �
�
�

q � �b b b b mw c T T q c T
t

( ) , 	 (2)

where ρ is the tissue density, c the specific heat of the tissue, ρb 
the blood density, cb the specific heat of the blood, wb the blood 
perfusion rate, qm the metabolic heat generation and Tb the arterial 
blood temperature. The first term on the left-hand side represents 
heat conduction or diffusion, second term the heat exchange between 
blood and tissue due to blood perfusion that acts like temperature 
dependent heat source, the third term the heat generation due to 
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the metabolic activity and the term on the right-hand side the heat 
accumulation. The heat exchange between the arterial blood flow and 
the tissue proposed Pennes in 1948 [72] who assumed that it happens 
on the capillary level due to the large interface area. Therefore, 
the blood perfusion rate represents the volumetric blood flow rate 
through the capillary network and small arterioles per tissue volume 
and is non-directional.

Applying first-order Taylor series expansion of the Eq. (1), while 
neglecting higher-order terms, we can rewrite the definition of the 
heat flux as:
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Implementing Eq. (3) to the Eq. (2) yields the (type I) DPL 
equation of bioheat transfer [61,68]:
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where heat conductivity of the tissue and metabolic heat generation 
assumed to be constant; λ = const. and qm = const. The first term on 
the left-hand side of the Eq. (4) represents the hyperbolic term that 
captures thermal inertia due to the finite speed of heat propagation, 
which is otherwise not present in the bioheat models using Fourier 
law of heat conduction. The second term on the left-hand side is 
the energy storage term from the classical heat conduction, that is 
now extended to account for the delayed effect of blood perfusion 
on heat transfer. The first term on the right-hand side represents 
classical heat conduction, while the second term, which is the mixed-
derivative term dramatically alters the fundamental characteristics of 
heat propagation, by removing the wave behavior of the hyperbolic 
type of equation becoming parabolic in its nature. In the case of τq = 0 
and τT = 0 or τq = τT, the DPL model reduces to the classical Pennes 
equation.

The non-Fourier DPL bioheat model given by Eq. (4) is written 
for each layer or tissue of the skin cancer model, assuming constant 
material properties and parameters. Equilibrium and compatibility 
conditions have to be prescribed at the interface between two adjoint 
tissues to describe the bioheat transfer in the whole computational 
domain. The compatibility condition at the interface is:
T t T ti is s, , ,� � � � ��1 	 (5)

where indices i and i + 1 represent adjoint layers and s position vector 
of the interface boundary. This condition represents that there is no 
contact resistance between the layers. While equilibrium condition 
represents the conservation of energy and is written as:
q s n q s ni i i it t, , ,� � � � � � �� �1 1 	 (6)

where n represents the normal vector. By applying definition of the 
heat flux given by Eq. (3) to the equilibrium condition, it can be 
rewritten in the following form:
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which is complex and not easy to implement. For the example when 
τq,i = τq,i+1 and τT,i = τT,i+1 the equilibrium condition can be rewritten in 
the form −λi∇Ti·ni = −λi+1∇Ti+1·ni+1 which is well known equilibrium 
condition in heat transfer.

2.1.3  Boundary Conditions

Because the bioheat problem has been treated as axisymmetrical, the 
tissue temperature and other field functions like heat flux has been 
transformed from classical cartesian coordinate system to cylindrical 
one which does not depend on the angle; T(x,y,z,t) → T(r,z,t), and 
where r represents the radial distance from the center and z the depth 
from the top of domain.

To simulate dynamic thermography, it is essential to define 
appropriate initial and boundary conditions for the computational 
domain. For the bottom section of the domain, Dirichlet boundary 
condition is applied. This choice is based on the assumption that 
the muscle tissue is thick enough to preserve body core temperature 
throughout both the cooling and warm-up phases. Therefore, at the 
bottom we prescribed the following condition:
T r z t T z H r D t tbc sim( , , ) , , / , ,� � � � � �0 2 0 	 (8)

where Tbc is the body core temperature and tsim = tcool + twarm is the 
total simulation time, which is composed of the cooling time tcool, 
and the warm-up time twarm. The body core temperature can vary 
between 36.5 °C to 37.5 °C and has chosen to be Tbc = 37 °C, as this 
is considered to be the average core body temperature of a healthy 
person at rest [17,44,52].

On the sides of the domain we prescribed adiabatic boundary 
condition, based on the assumption that there are no side effects that 
will influence the thermal contrast of the lesion:

q( , , ) ( , , ) , , / , ,r z t T
r
r z t z H r D t tsim� �

�
�

� � � � � �0 0 0 2 0 	 (9)
To simulate cooling with the cold air jet and rewarming period, we 

prescribed Robin boundary condition as:
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r
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Fig. 1.  Computational domain of the axisymmetric multilayered skin tumor model; a) isometric view with named tissues and b) cross sectional view with dimensions and boundary names



SV-JME   ▪   VOL 71   ▪   NO 9-10 ▪   Y 2025   ▪   275

Process and Thermal Engineering

where α represents the heat transfer coefficient of the cooling 
air jet during the cooling time or the heat transfer coefficient to 
the environment during the rewarming time, and T∞ denotes the 
temperature of the cooling jet or ambient temperature. During the 
cooling phase, the heat transfer coefficient was set to α = 50 W/(m2K) 
and the temperature of the cold air jet to T∞ = 5 °C. After cooling 
time tcool, the cold air jet is removed, and rewarming occurs due to 
metabolic heat production, blood perfusion and heating from the 
environment. In the rewarming phase, the heat transfer coefficient 
is reduced to α = 10 W/(m2K), and the ambient temperature is set to 
T∞ = 22.4  °C which is the same condition used for the steady-state 
simulation and is based on the following work [33,45,52,68].

The total simulation time has been set to tsim = 80 s, with the 
cooling phase lasting tcool = 30 s and the rewarming phase twarm = 50 s. 
The choice of a 30 s cooling phase is based on the work of Godoy 
et al. [73] that used a rewarming duration of twarm = 120 s. We 
deliberately opted for relatively short cooling and rewarming times 
compared to other studies [42,52], as our primary focus is to examine 
the thermal behavior of tissue under highly transient conditions, and 
to shorten the examination period of the dynamic thermography.

The initial temperature condition T(r,z,t = 0) was set to the steady-
state solution of the bioheat problem, determined by the boundary 
conditions specified with Eq. (8) to Eq. (10). This approach assumes 
that the patient has already acclimated to the conditions in the 
examination room.

2.1.4  Model Parameters

Material properties for each tissue layer can vary a lot and are not 
determined exactly as stated by Çetingül and Herman [44]. Therefore, 
the material properties have been taken as an average value found in 
the literature and can also be found in the work of other authors [33,42-
45,52]. For tumor with different stages, we assumed and prescribed 
the same material properties, due to the lack of more precise data; 
therefore, stage differs only with the size of the tumor as suggested 
by Clark [26]. Table 1 gathers the material properties like density, 
specific heat, blood perfusion rate, relaxation times etc., used in the 
presented skin tumor model together with the tissue dimensions.

Relaxation times τq and τT needed for the non-Fourier DPL 
bioheat model remains challenging to define exactly due to the lack 
of experimental data, significant variability and ongoing debate. For 
processed meat, these values are estimated to be τq = 14 s to 16 s and 
τT = 0.043 s to 0.056 s, while for muscle tissue from cow have shown 
values τg = 7.36 s to 8.43 s and τT = 14.54 s to 21.03 s [65,74]. The 
relaxation times τq and τT in this work were determined based on the 
expressions provided in the generalized DPL model by Namakshenas 
et al. [59] that is based on the tissue porosity as well. However, in 
this work the influence of porosity is taken into account through 
effective tissue properties instead. The relaxation times τq and τT can 
be estimated using the following expressions [59]:
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where ctb = ρc/ρbcb represents the stored energy of the tissue relative 
to that of the blood, while λtb = λ/λb denotes the thermal conductivity 
of the tissue compared to the blood. G is the coupling factor between 
the tissue and blood, defined as [59]:
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where Nu is the Nusselt number and db the representative artery 
diameter of the tissue.

The thermal relaxation time τq for all layers, except the tumor and 
epidermis, was determined based on Eq. (11) by prescribing Nusselt 
number to Nu = 4.93 and artery diameter to db = 1.5 mm, representing 
average value for the skin and muscle.

For tumor layer we assigned a higher τq value than the other tissues 
to reflect its increased perfusion rate and structural inhomogeneity 
[75], therefore, we set it to τq = 3.0 s for the tumor. In contrast, the 
epidermis, which lacks blood vessels and is more uniform than other 
tissue layers, was given a lower thermal relaxation time. We set τq for 
the epidermis to τq = 0.3 s, assuming that despite its homogeneity, it 
still introduces some thermal resistance due to delayed heat transfer. 
The values for τT were selected based on the stability criteria for DPL 
presented by Quintanilla and Racke [76]. In this study, τT was chosen 
to be half of τq, with τT /τq = 1/2, in order to satisfy the stability limits 
commonly associated with higher-order Taylor series expansions. 
The values chosen for the τq and τT for each tissue are also gathered 
in Table 1.

The arterial blood temperature needed for governing equation 
is assumed to be as equal as defined body core temperature; 
Tb = Tbc = 37.0 °C.

2.1.5  Solver and Discretization

Presented multilayered skin cancer model based on the non-Fourier 
DPL bioheat equation to simulate dynamic thermography is highly 
non-linear and numerically difficult to solve. For this reason, we 
wrote our own solver based on the subdomain BEM approach using 
elliptic axisymmetric fundamental solution and quadratic elements, 
which has been tested on bench-mark problems of other authors [77–
79]. A detailed description of the solver and numerical discretization 
of non-Fourier DPL model with the treatment of equilibrium 
condition at the interface can be found in our previous work [68]. 
The maximum number of non-linear steps for dynamic thermography 
simulation and inverse bioheat problem was set to lmax = 20, with a 
maximum error tolerance of ε = 1·10−8.

To discretize computational domain, we used our own 2D 
structured mesh generator with the representative spatial element size 
of ∆r = ∆z = 0.5 mm, with minimal number of 2 elements in z direction 
in each layer. A non-uniform mesh was used with an expansion factor 
of ζ = 1.1 in both spatial directions from the center. The reason for 
using own mesh generator is due to the inverse problem solving, 
where diameter and thickness of the tumor is changing during the 
optimization process where generation of a new mesh must be done. 
For the Clark II example, the computational mesh consists of 360 
computational cells and 1517 computational nodes, while for the 
Clark IV example the mesh includes 442 computational cells and 
1855 nodes and is presented in Fig. 2. The difference in mesh density 
between these two examples is because of different tumor sizes, 
generating different element sizes for tumor discretization, which 
affects the size of the structured mesh for the whole computational 
domain. Presented mesh density has been confirmed to be adequate 
following a mesh sensitivity study. Similar, by time step sensitivity 
analysis, we define the time step needed to describe the transient 
behavior of the model. For time discretization of tsim = 80 s a constant 
time step of ∆t = 0.5 s has been taken.
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Fig. 2.  2D computational mesh representing axisymmetric cylindrical domain  
for Clark IV example

2.2  Inverse Bioheat Problem

When the numerical simulation of certain processes or phenomena 
is needed, we are talking about direct problem. For example, the 
simulation of dynamic thermograph is direct bioheat problem, where 
we must prescribe governing equation of the process, geometry, all 
material or model properties and boundary conditions describing 
the process. These problems are well-posed, meaning that they have 
a unique and stable solution that can be obtained using established 
numerical or analytical methods. However, when certain parameters, 
such as material properties, boundary conditions or internal sources, 
are unknown and must be estimated from indirect measurements, 
we encounter what is known as inverse problem. Inverse problems 
seek to determine unknown inputs based on observed outputs. Their 
solution depends on the mathematical model used and is often 
sensitive to measurement noise or model inaccuracies, which can 
lead to instability or non-uniqueness of the solution, characteristics 
that make inverse problems ill-posed by nature [42,45–47,52,80,81].

To solve inverse problem an optimization approach has been 
used. The inverse problem is transformed to optimization process by 
objective function that measures the difference between simulated 
temperature response and actual measurement data. The solution of 
the inverse problem is represented by the minimum of the objective 
function. A well-posed inverse problem should have only one global 
minimum; otherwise, the solution is not unique, making parameter 
estimation unreliable [42,45,52].

This paper covers two test examples; Clark II and Clark IV, to 
evaluate their important properties based on two different thermal 
responses of the tissue, first the absolute temperature; Tabs, and 
second the temperature difference regarding to the healthy skin; 

∆T. Therefore, this paper covers four different inverse problems, to 
evaluate the feasibility of early skin cancer diagnosis and solution 
sensitivity regarding to type of the recorded thermal image.

2.2.1  Measurement Data

Dynamic thermography measurements have been generated 
numerically by solving direct bioheat problem with known searched 
parameters and by adding a measurement noise to simulate more 
realistic measurement data and not to commit inverse crime.

First test example uses early stage (Clark II) skin tumor with 
the following searched parameters; d = 2.0 mm, h = 0.44 mm, 
wb = 0.0063 s−1, τq = 3.0 s, and the second one the later stage (Clark 
IV) tumor with the following searched parameters; d = 2.5 mm,  
h = 1.1 mm, wb = 0.0063 s−1, τq = 3.0 s, that has already been 
introduced in Section 1 and gathered in Table 1. These parameters 
are written here again due to clarity, because they represent the exact 
values of the considered inverse problems.

Thermal response during the dynamic thermography has been 
recorded in two ways, first as an absolute temperature value and 
second as the temperature difference. Fig. 3 shows the absolute 
temperature response of simulated dynamic thermography for Clark 
II and Clark IV tumor, while Fig. 4 and 5 show the temperature 
difference response. As can be seen, the temperature contrast or 
difference between the tumor temperature and surrounding healthy 
skin is increased during the cooling phase by almost two times, 
compared to the steady-state conditions. This is the advantage of 
dynamic thermography. The temperature spatial profile is the same 
regarding the absolute or temperature difference response, while the 
transient behavior is different, as can be seen from Fig. 3 and 4. For 
better understanding, Fig. 5 is simulating the processed IR image 
at the end of the cooling phase together with the tumor dimension, 
where enhanced contrast of dynamic thermography is obtained. It 
can be observed that early-stage tumors produce lower temperature 
contrast than later-stage ones meaning it can be harder to detect and 
diagnose.

Measurement data obtained at the surface of the skin z = 0 for 
position p and time t can be written as:
T T r tabs s p t p t, , , ( , , ),= 0 	 (14)

�T T r t T D ts p t p t t, , ( , , ) ( / , , ),� �0 2 0 	 (15)
where index s represents simulation, rp the radial position of the 
measurement points and tt the time of the measurement taken. 
Measurement data resolution is very important for successful 
parameter estimation, as it needs to describe the temperature response 
adequately. The measurement points have been taken in the radial 
range of rp ∈ [0 mm, 5 mm] at np = 6 equally spaced points meaning 
that the distance between two measurement points is δr = 1 mm. 
While for the time measurement the data has been taken during 
cooling, as well as rewarming period of dynamic thermography;  
tt ∈ [0 s, 80 s] at intervals of δt = 1 s generating nt = 81 time measurement 

Table 1.  Tissue dimensions and material properties of the skin cancer model

Layer d [mm] h [mm] ρ [kg/m3] cp [J/(kg K)] λ [W/(mK)] wb [s−1] qm [W/m3] τq [s] τT [s]
Epidermis – 0.1 1200 3589 0.235 – – 0.30 0.15
Papillary Dermis – 0.7 1200 3300 0.445 0.0002 368.1 2.28 1.14
Reticular Dermis – 0.8 1200 3300 0.445 0.0013 368.1 2.46 1.23
Fat – 2.0 1000 2674 0.185 0.0001 368.3 2.16 1.08
Muscle – 8.0 1085 3800 0.510 0.0027 684.2 2.22 1.11
Blood – – 1060 3770 – – – – –
Tumor Clark II 2.0 0.44 1030 3852 0.558 0.0063 3680 3.00 1.50
Tumor Clark IV 2.5 1.1 1030 3852 0.558 0.0063 3680 3.00 1.50
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points. We notice that this measurement resolution is fine enough 
to capture tissue temperature response and to be able to evaluate 
tumor parameters. Finer resolution did not increase the accuracy of 
the searched parameters, while coarser resolution, especially in time 
domain, increased the error in the estimated parameters.

To mimic real measurement data a white noise has been added to 
the generated measurement data as:
T T Tabs m p t abs s p t err, , , , , , ,� ���

	 (16)

� � �T T Tm p t s p t err, , , , ,� �
�
2 	 (17)

where η represents a random number; η ∈ [−1, 1], index m stands 
for measurement data and ∆Terr the temperature uncertainty level. 
The second term on the right-hand side represents the temperature 
deviation or noise. Modern IR cameras can obtain noise equivalent 
temperature difference (NETD) value of less than 30 mK. Therefore, 
we investigate test examples under three levels of uncertainty; 0 mK, 
25 mK and 50 mK [45,52]. The first one represents exact measurement 
data, while the last two represent low and high level of noise. In the 

last two cases, the measurement data does not follow numerical 
model anymore and therefore no inverse crime is committed. Because 
the noisy measurement data are generated randomly, we generated 
three different measurement sets for each test example and noise 
level, except for the exact one. This way we can also analyze how 
the randomness of the added white noise affects the inverse solution.

For a clear presentation Fig. 6 shows the generated measurement 
data compared to the simulated dynamic thermography response or 
exact data for Clark II and Clark IV test example. As can be seen, 
the level of noise can affect the temperature response for the Clark II 
more than for Clark IV, which makes solving inverse problem more 
difficult and poor accuracy to be expected for early-stage tumor.

2.2.2  Objective Function

Objective function measures the difference between simulated 
temperature response of dynamic thermography by guessed searched 
parameters and generated measurement data in our case. Therefore, 
the objective function for the absolute temperature response can be 
defined as:

Fig. 3.  Simulated absolute temperature response Tabs,s at the skin surface for Clark II and Clark IV tumor during dynamic thermography:  
a) transient response for tumor position r = 0 and healthy skin at position r = D/2, and b) radial temperature distribution at the end of cooling phase t = 30 s

Fig. 4.  Simulated temperature difference response ∆Ts at the skin surface for Clark II and Clark IV tumor during dynamic thermography:  
a) transient response of maximal temperature difference measured at the center of the tumor, b) radial temperature difference distribution at the end of cooling phase t = 30 s
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and for the temperature difference or temperature contrast as:
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where indices 1 and 2 stand for the absolute and temperature difference 
thermal response, respectively, F(·) is the objective function value, 
y is the vector of unknown parameters, indices t and p correspond 
to the time and location of temperature measurements, while nt and 
np represent the number of observed time points and measurement 
locations. Vector y is defined as y = {yj; j = 1, ..., n} = {d, h, wb, τq}, 
where n = 4 is the number of searched parameters.

2.2.3  Levenberg-Marquardt Algorithm

Deterministic optimization methods work faster and require fewer 
evaluations compared to stochastic methods [49] like particle swarm 
optimization (PSO) [82], design of experiment (DOE), differential 
evolution (DE) [83] or simulated annealing (SA), when objective 
function is smooth and computational cost for direct problem is high. 

In this work, the LM optimization algorithm is chosen because it 
balances the advantages of the steepest descent and Gauss-Newton 
methods, making it well-suited for nonlinear least-squares problems 
[45,84].
The optimization problem is formulated as:

find Fy y
y

* argmin ( ) ,� � � 	 (20)
where y* represents the minimum of the objective function and 
solution of the inverse problem. The optimization is performed 
iteratively, updating the unknown parameter values using:
y y s y yk k v k k kF F� �� � � �1 1� ( ) ( ), 	 (21)

where s represents the search direction, β is the step size, and 
indices k and v denote iteration and trial step indices, respectively. 
LM algorithm finds the search direction at each iteration step as the 
solution to the equation system:

J J I s J f yk
tr

k k k k
tr

k� �� � � � �� ( ), 	 (22)

where J represents the Jacobian matrix, µ is a damping parameter, 
I the identity matrix and f(·) represents the residual vector; 
F(y) = ftr(y)·f(y) → f(y) = {fi; i = 1, ..., m}, where m = ntnp. In each 
iteration step the Jacobian matrix and damping parameter must be 

Fig. 5.  Simulated temperature difference ∆Ts contour at the skin surface, simulating the IR image at the end of the cooling phase for;  
a) Clark II and b) Clark IV tumor, while blue line represents tumor diameter

Fig. 6.  Representation of numerically generated measurement data of temperature difference response ∆Tm for Clark II and Clark IV tumor using 0 mK, 25 mK and 50 mK level of noise:  
a) transient response at the center of the tumor, and b) radial response at the end of cooling phase t = 30 s
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calculated and updated. The Jacobian matrix is evaluated numerically 
using first-order finite difference scheme as:

J f
y

f y y f y
yi j

i

j

i j j i j

j
,

( ) ( )
,�

�
�

�
� ��

�
	 (23)

where indices i and j represent the row and column of matrix J, and 
∆yj represents the change of parameter j, which has been taken as 1 % 
of its value; ∆yj = 0.01yj.

Once the search direction sk is known the solution can be updated 
using Eq. (21) where the descent criteria is checked; F(yk+1) < F(yk). 
The step size is taken as β0 = 1 for the first trial, as the search direction 
is also controlled by the damping parameter µ. If the descent criteria 
is not met, the step size is then reduced by βv+1 = βv /2.
The damping parameter is updated by equation:

� � �k k k� � � ��
��

�
��

1

31

3
1 2 1max , ( ) , 	 (24)

where θ represents the gain ratio as:

�
�k

k k

v k

F F
Z Z

�
�
�

�( ) ( )

( ) ( )
,

y y
s
1

0
	 (25)

where Z(·) represents a linear Taylor expansion of the objective 
function. For the first iteration step, the damping parameter has been 
chosen to be µ0 = 10−5max(Jtr·J).

To stop the optimization algorithm, we used three stopping criteria 
where only one of them has to be fulfilled:
k kmax> , 	 (26)

J f yk
tr

k� � � �
�

�1,
	 (27)

y y yk k k� � � �� �1 2 2� � , 	 (28)

where kmax represents the maximum number of iterative steps and ε1 
and ε2 the tolerance for the gradient and step size, respectively. The 
maximum number of iterative steps has been chosen to be kmax = 50, 
while the tolerance for the second and third criteria has been taken as 
ε1 = ε2 = 10−8.

Table 2.  Different starting points for the optimization process

Example y0 d [mm] h [mm] wb [s−1] τq [s]

Clark II
1 2.3 0.60 0.0080 3.5
2 1.9 0.50 0.0060 2.8
3 1.7 0.30 0.0050 1.5

Clark IV
1 2.4 0.90 0.0090 3.7
2 2.6 1.20 0.0060 2.8
3 1.8 0.70 0.0050 1.7

2.2.4  Starting Point

To test the stability of the inverse solution depending on the initial 
guess, we have chosen three different starting point of optimization 
process. Table 2 is gathering the different initial guesses for the 
optimization process for Clark II and Clark IV example. One starting 
point is close to the exact solution, while other two are more off.

3  RESULTS AND DISCUSSION

Results of the inverse bioheat problem are presented in tables, which 
are the most appropriate to show the estimated value of the searched 
parameters. For better representation of results accuracy, the relative 
error for certain parameters is highlighted with the gray color in 
the tables where intensity reflects its level. This section covers the 
analysis of the starting point, measurement noise and randomness of 
the measurement data using the absolute temperature response, while 
at the end the effect of thermal response type is presented.

3.1  Starting Point

The analysis of the starting point has been carried out first to evaluate 
its effect on the solution of the inverse problem and stability of the 
optimization process. Table 3 shows the solution of the inverse 
problem together with the relative error regarding the starting point 
for Clark IV tumor using absolute temperature response. The solution 
for the exact measurement data; 0 mK, coincidence with the exact 
data and does not depend on the starting point. Solution of the inverse 
problem also does not depend strongly on the starting point for the 
noisy measurement data; however, there can be a slight difference 
but negligible. The average objective function value reached for the 
exact measurement data was 1.39·10−9 K2 in 12 optimization steps. 
While for the noisy measurement data the objective function value 
increased to 2.65·10−2 K2 for the 25 mK noise and to 1.07·10−1 K2 
for the 50 mK with the average number of optimization steps 10, 
because the measurement data does not follow the numerical model 
exactly due to the noise. Similar observation and conclusion have 
been made using different set of measurement data, Clark II example 
and temperature difference response, and is therefore omitted here.

At this point, we can conclude that solution of the inverse bioheat 
problem using LM algorithm does not depend on the initial guess 
or starting point making optimization method stable, as well as that 
convergence of the optimization process is fast.

3.2  Measurement Noise and Data

Here, we would like to evaluate how the level of measurement noise 
and randomness of generating the measurement data set affects 

Table 3.  Solution of the inverse problem for Clark IV example using different starting points and absolute temperature response; F1(y), together with relative error

ΔTerr

Solution Relative error
y0 d [mm] h [mm] wb [s−1] τq [s] d [%] h [%] wb [%] τq [%]

Exact 2.50000 1.10000 0.006300 3.00000

0 mK

1 2.50002 1.09995 0.006300 3.00002 0.00 0.00 0.01 0.00

2 2.50001 1.09996 0.006300 3.00001 0.00 0.00 0.00 0.00

3 2.50002 1.09996 0.006300 3.00001 0.00 0.00 0.00 0.00

25 mK
1 2.50889 1.11174 0.006188 2.97513 0.36 1.07 1.78 0.83
2 2.50997 1.09994 0.006230 2.97529 0.40 0.01 1.11 0.82
3 2.50909 1.11072 0.006191 2.97496 0.36 0.97 1.73 0.83

50 mK
1 2.51047 1.00056 0.006691 3.03187 0.42 9.04 6.21 1.0
2 2.51011 1.00098 0.006691 3.03156 0.40 9.00 6.21 1.05
3 2.51019 1.00031 0.006694 3.03156 0.41 9.06 6.25 1.05
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the solution. Because, it has been shown that the solution does not 
depend on the starting point, we set starting point 3 for all our further 
calculations. Table 4 shows the obtained results for Clark II example 
using absolute temperature response and different data sets for 25 mK 
and 50 mK noise level together with relative error. As can be seen, 
the solution varies on the randomness of the noise or measurement 
data set and the relative error of the solution increases by increasing 
the level of noise. Diameter of the tumor d can be determined very 
accurately, while other parameters have the same level of error, 
however, still under 5 %, meaning a good estimation or retrieval of 
the searched parameters. Similar findings have also been found for 
Clark IV example and are therefore omitted here.

From this small analysis, we can conclude that the solution of the 
inverse problem depends on the level of the noise and randomness 
of the generated measurement data set. Therefore, it is important to 
generate or record more than one measurement data set to evaluate 
the deviation of the solution.

Because inverse problem solution depends on the randomness 
of the measurement data, it is better to use statistical indicators like 
mean value, deviation and coefficient of variation (COV). We are 
well aware that three different solutions are too small sample size 
to make accurate statistical analysis, however, it can still give us the 

insight on the accuracy of the inverse solution and its dependency. 
Table 5 shows the obtained inverse solution for Clark II and Clark IV 
examples using statistical indicators for noisy measurement data of 
absolute temperature response, together with the mean error.

As can be seen from Table 5 for Clark II the diameter can be 
determined very accurately regarding the noise level, while the 
accuracy of other parameters is in the same range of less than 1 % 
for low noise level and increases to 2 % to 3% for high noise level. 
The COV also shows the deviation of the estimated parameters that 
coinciding with the average error and increases by increasing level 
of noise, meaning that these parameters will be hard to evaluate in 
real experimental setup. Similar conclusion can be made for Clark 
IV example that shows good evaluation of tumor diameter and better 
evaluation of relaxation time than for Clark II example, while the 
error for tumor thickness and blood perfusion rate is slightly higher 
but still in the same range, less than 5 %. This shows that relaxation 
time can be easily obtained for later stage tumor.

Findings coincide with the findings of our previous work [45], 
where diameter can be determined very accurately even for the 
noisy measurement data, regarding the stage of the tumor. And also, 
that blood perfusion rate and thickness show lower accuracy and 
interdependence.

Table 4.  Solution of the inverse problem for Clark II example using different measurement data set of absolute temperature response; F1(y), together with relative error

ΔTerr

Solution Relative error
y0 d [mm] h [mm] wb [s−1] τq [s] d [%] h [%] wb [%] τq [%]

Exact 2.00000 0.44000 0.006300 3.00000

25 mK
1 2.00000 0.43494 0.006380 2.99436 0.00 1.15 1.26 0.19
2 2.00000 0.43730 0.006314 2.96224 0.00 0.61 0.22 1.26
3 2.00000 0.44054 0.006271 3.03409 0.00 0.12 0.46 1.14

50 mK
1 2.01886 0.43046 0.006178 3.03609 0.94 2.17 1.93 1.20
2 2.00000 0.46098 0.006174 2.91235 0.00 4.77 2.00 2.92
3 2.00000 0.42768 0.006426 2.95631 0.00 2.80 2.00 1.46

Table 5.  Solution of the inverse bioheat problem for Clark II and Clark IV example under noisy 
measurement data sets of absolute temperature response; F1(y), showing the mean value, 
deviation, COV and mean relative error

Clark 
II

ΔTerr
d [mm] h [mm] wb [s−1] τq [s]

Exact 2.00000 0.44000 0.006300 3.00000

25 mK

Mean value 2.00000 0.43759 0.006321 2.99690
Deviation 0.00000 0.00281 0.00005 0.03599
COV [%] 0.00 0.64 0.86 1.20
Error [%] 0.00 0.63 0.65 0.86

50 mK

Mean value 2.00629 0.43971 0.006260 2.96825
Deviation 0.01089 0.01848 0.000144 0.06273
COV [%] 0.54 4.20 2.30 2.11
Error [%] 0.31 3.25 1.98 1.86

Clark 
IV

ΔTerr
d [mm] h [mm] wb [s−1] τq [s]

Exact 2.50000 1.10000 0.006300 3.00000

25 mK

Mean value 2.50510 1.11683 0.006204 2.98604
Deviation 0.01363 0.01486 0.00001 0.01856
COV [%] 0.54 1.33 0.21 0.62
Error [%] 0.47 1.53 1.52 0.63

50 mK

Mean value 2.50793 1.08020 0.006355 3.00681
Deviation 0.01973 0.06984 0.000308 0.02167
COV [%] 0.79 6.47 4.85 0.72
Error [%] 0.66 4.24 3.30 0.47

Table 6.  Solution of the inverse bioheat problem for Clark II and Clark IV example under noisy 
measurement data sets of temperature difference response; F2(y), showing the mean value, 
deviation, COV and mean relative error

Clark 
II

ΔTerr
d [mm] h [mm] wb [s−1] τq [s]

Exact 2.00000 0.44000 0.006300 3.00000

25 mK

Mean value 2.00045 0.45606 0.006094 2.98212
Deviation 0.00079 0.01779 0.000302 0.08330
COV [%] 0.04 3.90 4.95 2.79

Error [%]   0.02   4.31   4.55   2.16

50 mK

Mean value 2.02638 0.42853 0.006277 2.93446
Deviation 0.03468 0.04114 0.000690 0.18607

COV [%] 1.71 9.60 10.99 6.34

Error [%] 1.32 6.59 8.54 5.32

Clark 
IV

ΔTerr
d [mm] h [mm] wb [s−1] τq [s]

Exact 2.50000 1.10000 0.006300 3.00000

25 mK

Mean value 2.50208 1.07415 0.006387 2.99885
Deviation 0.00561 0.01426 0.000134 0.01172

COV [%] 0.22 1.33 2.10 0.39

Error [%] 0.17 2.35 1.79 0.31

50 mK

Mean value 2.52163 1.09922 0.006311 3.06237
Deviation 0.03057 0.07763 0.000486 0.06745
COV [%] 1.21 7.06 7.70 2.20
Error [%] 1.15 4.98 5.44 2.42
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3.3  Type of Thermal Response

Table 6 shows the obtained solution of the inverse problem using 
temperature difference response for both test examples. Comparing 
results to the one from Table 5, where absolute temperature response 
has been used, we can draw the same conclusion of estimating 
unknown parameters. Accuracy of tumor diameter and relaxation 
time is still better from the blood perfusion rate and tumor thickness, 
especially for Clark IV. The relative error of the estimated parameters 
based on the temperature difference response is higher than the 
results based on the absolute temperature response, especially for the 
early-stage tumor. This means it is better to use absolute temperature 
response to diagnose early-stage tumor. However, using temperature 
difference response shows that accuracy of the parameters is better 
for later stage tumor. These findings coincidence with our previous 
work [45]. Nevertheless, early-stage diagnosis is still possible using 
temperature difference response and good accuracy of estimated 
parameters can be obtain by keeping the level of measurement noise 
low.

From the analysis done on the solution of inverse bioheat problem, 
we can conclude that all searched parameters can be successfully 
evaluated even for high level of measurement noise, especially tumor 
diameter and relaxation time where relative error of the obtained 
parameters is less than 5 %. Based on this study, it is better to 
determine unknown parameters using absolute temperature response 
than temperature difference, especially for an early-stage tumor. 
However, from the practical point of view, temperature difference 
response is preferred because it does not depend strongly on the 
prescribed body core and surrounding temperature, making it more 
general and still accurate enough.

4  CONCLUSIONS

This paper presents a numerical framework for the non-invasive 
skin cancer diagnosis using dynamic IR thermography, supported by 
improved skin cancer model and inverse problem analysis, to estimate 
tumor diameter, thickness, blood perfusion rate and thermal relaxation 
time. A novel contribution of this work lies in the integration of the 
non-Fourier DPL bioheat model into a multilayered, axisymmetric 
skin cancer model, enabling a more realistic simulation of thermal 
behavior in heterogeneous biological tissues under transient thermal 
stimuli. The DPL model offers significant advantages over classical 
Fourier-based models by accounting for thermal lag, finite thermal 
wave propagation, and directional effects that are critical for capturing 
fast and localized thermal dynamics near skin tumors. To simulate 
dynamic thermography response, we used our own developed solver 
based on subdomain BEM approach that gives accurate solution and 
proves to be efficient, which is very important for solving inverse 
bioheat problems.

The inverse bioheat problem solved in this work is to find 
four important tumor parameters based on the non-Fourier DPL 
skin cancer model and transient thermal response of dynamic 
thermography, which also presents the novelty of this work. 
We analyze two different responses; absolute temperature and 
temperature difference response on two examples; Clark II and Clark 
IV stage tumor. Measurement data or thermal response has been 
generated numerically by prescribing known searched parameters 
that we would like to retrieve through inverse problem, and direct 
numerical simulation of dynamic thermography. A measurement noise 
of 25 mK and 50 mK has been added to the simulated responses for 
the Clark II and Clark IV tumor, to obtain more realistic measurement 
data. For dynamic thermography a convective cooling approach with 
cold air jet has been chosen, which replicates a clinically feasible 

dynamic thermography scenario, allowing recording of temperature 
response during both cooling and rewarming phases. To solve the 
inverse bioheat problem, a hybrid LM optimization algorithm has 
been implemented that was combined with direct bioheat problem of 
simulating dynamic thermography using BEM.

The results showed that solution of the inverse problem does not 
depend on the initial guess making LM algorithm robust, accurate 
and efficient for this type of inverse problem. All four parameters 
can be retrieved exactly only for the measurement data that follows 
numerical model exactly. However, this is not possible in real life 
problem. The parameters can be still retrieved very accurately even 
under higher level of measurement data noise, especially the diameter 
and thermal relaxation time for both examples using absolute 
temperature response. Blood perfusion rate and tumor thickness 
exhibit slightly higher estimation error but remain within acceptable 
bounds. The accuracy of the estimated parameters is lower when 
using temperature difference response, however, this is practically 
more feasible, because the temperature contrast does not depend 
strongly on the body core temperature or boundary condition at the 
bottom of the numerical model. For Clark II example, all parameters 
were estimated with relative errors below 5 % for lower level of 
measurement noise, demonstrating strong potential for early-stage 
skin cancer diagnosis.

Overall, this study confirms that dynamic IR thermography, 
combined with non-Fourier bioheat modeling and inverse analysis, is 
a promising tool for non-invasive skin cancer assessment. The ability 
to estimate not only geometric properties but also physiological such 
as blood perfusion and thermal relaxation time provides insight into 
tumor size, stage, and invasiveness.

Future work will focus on developing this approach even further 
in the field of numerical simulations, solving inverse problems, 
statistical assessment of the approach, as well as on the experimental 
validation of the proposed model and real-time implementation 
strategies.
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Numerično reševanje inverznega problema dinamične termografije 
za diagnostiko kožnega raka na osnovi nefourierovega modela 
prenosa toplote

Povzetek  Članek obravnava numerično reševanje inverznega problema 
prenosa toplote za določitev štirih parametrov kožnega raka: premer, debelino, 
perfuzijski pretok krvi in relaksacijski čas. Določitev temelji na toplotnem 
odzivu kože pridobljenim z dinamično termografijo ter numeričnim modelom 
kožnega raka ki lahko bistveno izboljša diagnostično vrednost termografije. 
Za čim bolj realističen opis prenosa toplote v tkivu med procesom dinamične 
termografije je bil uporabljen nefourierov model z dvojnim faznim zamikom. 
Model kožnega raka je sestavljen iz večplastne kože, podkožne maščobe 
in mišice ter kožnega raka oziroma tumorja. Za rešitev kompleksnega 
nefourierovega modela ter simulacije dinamične termografije je bil razvit 
programski paket na osnovi metode robnih elementov. Simulacija dinamične 
termografije, ki za temperaturno vzbujanje uporablja curek hladnega 
zraka, je pomembna za rešitev inverznega problema, saj z njo pridemo do 
termičnega odziva oziroma temperaturnega kontrasta na površini kože pri 
predpostavljenih iskanih parametrih ter njene primerjave z meritvijo. Tako je 
bil inverzni problem rešen s pristopom optimizacije, pri čemer je bil uporabljen 
Levenberg–Marquardt algoritem. Meritve so bili pri tem generirane numerično 
z vnaprej znanimi parametri tumorja in dodanim šumom za ovrednotenje 
natančnost in občutljivost inverzne rešitve. Rešitev inverznega problema je 
bila pri tem testirana za dva različna temperaturna odziva, in sicer absolutno 
temperaturo in temperaturno razliko, kakor tudi za dve različni stadija 
tumorja kot je Clark II, ki predstavlja zgodnji stadij in Clark IV, ki predstavlja 
pozni stadij. Vsi pomembni parametri tumorja so bili uspešno določeni tudi 
pri visoki stopnji šuma, zlasti premer in relaksacijski čas, pri čemer je bila 
natančnost ovrednotenih parametrov nekoliko boljša z uporabo absolutnega 
temperaturnega odziva. Rezultati kažejo na robustno in obetavno metodo 
za zgodnjo diagnostiko kožnega raka in pomembno prispevajo na področju 
modeliranja prenosa toplote v bioloških tkivih, reševanju inverznih problemov 
ter razvoju dinamične termografije.

Ključne besede  numerično reševanje, dinamična termografija, inverzni 
problem, nefourierov prenos toplote, DPL model, metoda robnih elementov, 
Levenberg-Marquardt optimizacija
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