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Abstract This paper presents numerical solving of the inverse bioheat problem to estimate four skin cancer parameters; diameter, thickness, blood perfusion
rate and thermal relaxation time, based on the thermal response on the skin surface obtained by dynamic thermography and numerical skin cancer model,
which can greatly enhance dynamic thermography diagnostics. To describe the heat transfer inside biological tissue and thermal behavior during the dynamic
thermography process as realistic as possible, the non-Fourier dual-phase-lag bioheat model was used, as well as skin cancer model has been composed of
multilayered healthy skin, embedded skin tumor and subcutaneous fat and muscle. Boundary element method has been used to solve a complex non-Fourier
bioheat model to simulate dynamic thermography based on the skin cancer model and guessed searched parameters to obtain the thermal response on the
skin surface during the cooling and rewarming phase using a cold air jet provocation, which is needed for the solution of the inverse bioheat problem. The
inverse problem has been solved by optimization approach using the hybrid Levenberg-Marquardt optimization method, while the measurement data has been
generated numerically with known exact tumor parameters and added noise, to evaluate the accuracy and sensitivity of the solution. Inverse problem solution
has been tested for two different thermal responses; absolute temperature and temperature difference response, as well as for two different tumor stages;
early stage or Clark Il and later stage or Clark IV tumor. All important tumor parameters were successfully retrieved, especially the diameter and relaxation time,
even for the high level of noise, while the accuracy of obtained parameters is slightly better using absolute temperature response. The results demonstrate the
robustness of the method and a promising way for early diagnosis. The findings contribute to improving bioheat modeling in biological tissues, solving inverse
bioheat problems and advancing dynamic thermography as a non-invasive tool for early skin cancer diagnosis.
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Highlights

= Non-Fourier dual-phase-lag model improves the heat transfer simulation in skin cancer.

= Dynamic thermography with cold air jet detects tumors during cooling and rewarming.

= Levenberg-Marquardt algorithm estimates tumor diameter, thickness, perfusion rate, and relaxation time.

= Tumor parameters are estimated robustly even with high noise in thermography temperature data.

1 INTRODUCTION

In recent years due to the development of infrared (IR) cameras,
thermography has become an invaluable tool in science and
engineering for many heat transfer problems and applications where
measuring or monitoring of the temperature is important. IR camera
detects thermal radiation emitted from the observed object, which
is then converted into electrical signals to produce thermal images
or thermograms. The advantage of this technique is that it measures
or records the temperature in a contactless manner for the observed
object compared to a thermocouple, which must be in direct contact
and measures only at one point [1-3]. Of course, the disadvantage of
it is that it can only measure the temperature at the surface and you
have to accurately define various parameters like the emissivity of the
surface, surrounding temperature, relative humidity etc. to measure
surface temperature accurately in an absolute manner. However,
the obtained thermal image can still be used in the relative manner,
meaning that thermography is mostly used and effective to detect
temperature changes based on the recorded temperature contrast of
the object surface for various scientific and industrial applications
[2,4-7]. For its advantage of recording thermal contrast image in non-
invasive manner and the ability to screen larger areas it also found
its way in various medical application from diagnostic of breast
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cancer, gynecology, kidney transplantation, heart treatment, fever
screening, brain imaging, dentistry, cryotherapy, forensic medicine,
laser treatments, burn diagnostics to dermatology [8-17].

Medical IR thermography is based on the principle of bioheat
transfer govern by blood perfusion, metabolic activity, tissue
conductivity and heat exchange with the environment. Therefore,
a physiological or pathological change of the tissue is reflected
in the change of the tissue temperature or thermal contrast on its
surface that can be easily observed with the IR camera. Therefore,
the deviation of the surface temperature can signal inflammation,
infection, neurological, vascular or metabolic dysfunction and even
malignancy due to the higher blood perfusion rate compared to the
surrounding healthy tissue [2,8,18-20]. Thermography is especially
effective in detecting lesions near tissue surface, like skin cancer.
Skin cancer cells differ from normal cells by growing larger due to
their rapid and uncontrolled division. This fast-paced growth requires
more energy to maintain cellular functions, a process referred to
as metabolism. To meet this increased energy demand, the body
initiates angiogenesis, where new blood vessels form from existing
ones. Melanoma lesions are, therefore, warmer than the surrounding
healthy skin, a key indicator used in diagnostic [21-24]. Because
medical IR thermography can identify small temperature differences,
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it can also detect the growth of new blood vessels or metabolic
changes associated with tumor development meaning it can also
be a valuable tool for drug or treatment evaluation [25]. The most
dangerous form of skin cancer is melanoma that can easily spread to
other soft tissues, for which is fatal and responsible for about 75 %
of all skin cancer-related deaths [18]. According to Clark et al. [26]
and Breslow [27], there is a direct correlation between the survival
rate and invasiveness or depth of the melanoma. Clark classified
melanoma into five levels from I to V, which is still used nowadays.
Clark I and II represent an early stage with more than 72.2 % survival
rate, for which an early detection or diagnostic is very important
factor to improve the survival in patients with malignant melanoma
[26].

Currently, the detection of melanoma mainly relies on a subjective
asymmetry, border, color, diameter, evolution (ABCDE) test [28]
performed visually by dermatologists, general practitioners or primary
care physicians. The ABCDE test provides a qualitative guideline, and
it requires a trained specialist to distinguish malignant lesions from
benign nevi. Moreover, the ABCDE approach has a relatively high
false-alarm probability and moderate detection probability [29]. Since
a false negative can lead to metastasis and death, excisional biopsies
are routinely performed even on lesions that are non-cancerous [30].
For these reasons, medical IR thermography, especially dynamic
thermography, is an emerging promising new technique offering a
fast, painless, non-invasive and radiation-free method for early skin
cancer diagnosis with high sensitivity and specificity that can achieve
rates of up to 99 % [2,18,31].

Medical IR thermography can be done in two ways, first as a static
or passive and secondly as dynamic or active thermography. Static
thermography obtains the thermal contrast image or thermograms
of the skin or tissue under the steady-state condition, while dynamic
thermography uses thermal stimulus of the tissue by controlled
cooling or heating and observing thermal response of the tissue during
the recovery period [17-19,31-34]. Static thermography relies on the
natural temperature difference between a tissue and its surroundings,
with focus on detection of abnormal temperature variations, which
may indicate underlying health concerns. Despite being the most
used measurement strategy, it is in certain ways limited. Factors
such as bone structure, distribution of blood vessels, recent food or
beverage intake, patient positioning, time of day and hormonal cycles
can all affect accuracy of this measurement strategy [17,31,35,36].
Feasibility in routine medical practice is further reduced by strict
measurement protocols that have been proposed and the need for
temperature-controlled rooms where the patient has to acclimatize
[17,37]. On the other hand, dynamic thermography can provide
quantitative data about investigated tissue, by transient behavior of
the tissue due to the thermal stimulus and increased thermal contrast
due to the changed rate of bioheat transfer during recovery phase.
There are also various ways of stimulating the observed tissue, some
of them using conductive heat transfer, electromagnetic radiation
or convective heat transfer [17,31]. The most common used thermal
stimulus is cooling the tissue with cold gel packs or cold metal disk
[19,38-40], and convection cooling using cold air jets [18,33,41].
Research shows that dynamic thermography has multiple advantages
over static one. First, the temperature contrast during the recovery
phase is increased, making the diagnostic process more accurate,
as well as more information about the tissue properties or deep
lesion can be retrieved. Secondly, there is no need for the patient to
acclimatize or to have a special temperature-controlled room, making
the examination period much shorter [17-19,29,31].

Focusing on skin cancer or skin disease diagnosis, medical IR
thermography can reach its full diagnostic value potential when paired
with accurate bioheat modeling to solve direct and inverse problems
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[20,42-45]. Strakowska et al. [19,20] uses simplified one-dimensional
(1D) multilayered skin model to evaluate blood perfusion rate and
thermal parameters of the skin tissue based on the temperature
response of active thermography. Luna et al. [46] used a simple 2D
numerical model composed of tumor and healthy surrounding skin
to identify thickness and blood perfusion rate of the tumor based on
the static thermography information. Similar model has been used by
Partridge and Wrobel [47,48] to estimate blood perfusion parameters
of'the skin tumor, size and position using steady-state skin temperature
profile, as well as, Fu et al. [49] to estimate the size and position of
the circular tumor or multiple tumors using meshless generalized
finite difference method combined with a hybrid optimization
algorithm. Bhowmik and Repaka [42] upgraded the skin cancer
model to 3D multilayered one to estimate tumor diameter, thickness,
blood perfusion rate and metabolic heat generation. Bhowmink et al.
[50] also included thermally significant blood vessels into their 3D
multilayered skin tumor model to evaluate the effect of blood vessels
on finding the position and size of the tumor. Cheng and Herman
[43] used simplified 2D multilayered skin tumor model to investigate
numerically what type of cooling approach would give the highest
temperature contrast between the skin tumor and healthy skin during
the recovery phase of dynamic thermography. Cetingiil and Herman
[33,44] used a more realistic 3D multilayered skin lesion model to
evaluate model parameter and tumor shape sensitivity on dynamic
thermography temperature contrast. Similar model has also been
used by Bonmarin and Gal [51] on investigating lock-in dynamic
thermography for detection of early-stage melanoma, as well as
Iljaz et al. [52] to solve inverse bioheat problem to evaluate tumor
size, blood perfusion rate and metabolic heat generation based on
dynamic thermography thermal contrast. Later they improve the skin
tumor model by including thermoregulation of the blood perfusion
rate to simulate dynamic thermography [53] and solve inverse
bioheat problem to evaluate several tumor parameters [45]. All the
mentioned models to supplement dynamic or static thermography are
based on the Pennes bioheat model that has significant limitations,
including the assumption of uniform blood perfusion, the neglect
of blood flow direction and countercurrent heat exchange, and the
treatment of arterial blood as a constant value [54]. A major drawback
of the Pennes model is the assumption of infinite heat propagation
speed, which disregards thermal lag effects that become critical in
conditions with large heat fluxes in a relatively short period of time
especially in inhomogeneous biological structures [55-59]. In those
scenarios, Fourier-based bioheat models generally tend to fail in fully
capturing the process of heat propagation.

To address the limitations of traditional bioheat transfer models,
non-Fourier models have been developed to account for thermal lag
and microscale heat transfer effects. Maybe the most important non-
Fourier bioheat model is the dual-phase-lag (DPL) model [60,61]
introducing a relaxation time for heat flux and temperature gradient
and has been used in many bioheat transfer applications, like laser
irradiation during hyperthermia treatment, brain tissue heating
during laser ablation and nano-cryosurgery [62-64]. DPL model can
describe more complex bioheat transfer considering many effects
that classical Pennes model cannot describe, however, it has not been
used so extensively due to the hyperbolic behavior of the model and
its complexity to solve it numerically, as well as unknown tissue
relaxation times. The most important research has been done by Liu
and Chen [65] investigated the DPL model in a bi-layer spherical
tissue domain, using experimental data to estimate relaxation times
and demonstrating that the DPL model better captures non-Fourier
thermal behavior compared to classical bioheat transfer models,
particularly in scenarios involving rapid thermal processes and
finite thermal wave propagation. Similar Zhang et al. [66] used



the DPL model to study non-Fourier heat conduction in biological
tissues during pulsed laser irradiation. Kishore and Kumar [67]
tried to estimate thermal relaxation parameters numerically in laser-
irradiated living tissue. All these papers still use very simple tissue
models, usually composed out of single or double layer as 1D or 3D
axisymmetric problem and constant thermal relaxation parameters.

The literature review highlights that most existing thermography-
based skin cancer models rely on the classical Pennes bioheat
equation, which assumes uniform perfusion, constant arterial
conditions, and infinite heat propagation speed. Such assumptions
neglect tissue heterogeneity, blood flow direction, and thermal lag,
leading to limitations when modeling rapid transient processes in
multilayered biological tissues. Although the non-Fourier dual-phase-
lag bioheat model has been introduced in other biomedical contexts,
it has not been extensively applied to skin cancer thermography,
particularly for inverse problem formulations and the estimation of
multiple tumor parameters in realistic geometries.

In this study, these gaps are addressed by applying a non-Fourier
dual-phase-lag bioheat model in an axisymmetric multilayered skin
tumor domain and formulating the inverse problem using a boundary
element method solver combined with a Levenberg—Marquardt
optimization approach. The paper is organized as follows: Section
2 introduces the model geometry, governing equations, boundary
conditions, and numerical implementation, as well as describes the
inverse problem formulation and optimization framework. Section
3 presents the results and discussion, and Section 4 concludes the
work with key findings. Overall, this work contributes to the field
of mechanical engineering by advancing thermal modeling of
heterogeneous biological tissues and providing a more rigorous
framework for non-invasive diagnostics using dynamic thermography.

2 METHODS AND MATERIALS
2.1 Skin Cancer Model

An axisymmetric multilayered numerical model of skin cancer is
developed based on our previous work [45,53,68], work of Cetingiil
and Herman [44], Cheng and Herman [43] and Bhowmik and Repaka
[42]. The novelty here is that the model uses non-Fourier DPL
bioheat governing equation proposed by Tzou in 1990 [60] making
it more general and adapted to the complex bioheat behavior, tissue
non-homogeneity and other effects by adjusting the relaxation
time parameter. The model presented here is used for dynamic
thermography simulation by getting the tumor thermal response.

The most common thermal stimulus for dynamic thermography
is cooling the tissue by applying cold gel packs, metal blocks, water
immersion, alcohol sprays and even Peltier devices to control the
cooling temperature [17,19,38,39,69,70]. The disadvantage of these
cooling techniques is that we cannot monitor or record the thermal
contrast or response during the cooling period, which can give us
additional information about the investigated tissue [68]. Therefore,
in this paper we are proposing to use convective cooling approach
by temperature adjustable airflow like Ranque-Hilsch vortex tube
[18,41]. This way, we can monitor thermal response of the tissue
during the cooling and rewarming period of dynamic thermography
revealing more information about the investigated tissue, which is
needed for successful solving of the inverse problem.

21.1 Geometry

Skin cancer model is composed of six distinct layers, each with its
own thermophysical properties; epidermis, papillary dermis and
reticular dermis representing the skin, subcutaneous fat, muscle
and tumor, making model more realistic. Cetingiil and Herman
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[44] concluded that the shape of the tumor has little effect on the
temperature response on the skin surface during the rewarming
period and that most important parameters are average volume and
thickness. Therefore, the tumor is represented by cylindrical shape
where diameter and thickness represent its effective values. The
surrounding healthy tissue has also been modeled with cylindrical
shape with the lesion in the center, as can be seen from Fig. 1
showing the whole computational domain of the model. Because of
the cylindrical geometry of the domain and skin tumor, as well as
adiabatic boundary conditions at the side, the bioheat problem has
been treated as an axisymmetric one. This reduces the computational
cost due to the computational mesh dimension reduction, which is
very important for inverse problem solving. Discretization of an
axisymmetric computational domain needed for the numerical
simulation, is therefore done with only 2D cross sectional
discretization along the rotational axis, as shown in Fig. 2. This
drastically reduces the number of computational elements and nodes,
speeding up the computational time.

The dimension of the tumor for Clark II and Clark IV has
been chosen based on our previous work [45,52,68] and for both
examples are gathered in Table 1 together with the layer thicknesses
that have been taken from [42-45,53]. The size of computational
domain diameter D has been evaluated based on the comparison of
temperature contrast from the dynamic thermography simulation,
aiming to reduce the effect of adiabatic boundary conditions at the
side. The appropriate and chosen domain diameter is D = 40 mm,
while the height of the skin model is the sum of the heights of all
layers and is = 11.6 mm.

2.1.2 Non-Fourier DPL Model

In the wave theory of heat conduction, the heat flux and the
temperature gradient, are assumed to occur at different times.
In 1990, Tzou [60] introduced the DPL model with the aim of
eliminating the precedence assumption in the Cattaneo—Vernotte
model. It allows either the temperature gradient (cause) to precede the
heat flux (effect) or the heat flux (cause) to precede the temperature
gradient (effect) in the transient process. This can be mathematically
represented by [60]:

q(r,t+rq):—/lVT(r,t+rT), (1)

where q is the heat flux, r an arbitrary space vector, ¢ the physical
time, A the thermal conductivity, 7=7(r,#) the temperature, V is
the nabla operator, 1, relaxation time of the heat flux and 17 is the
relaxation of the temperature gradient. Relaxation time of the
heat flux can be also written as t,=a/C,, where a is the thermal
diffusivity and C the thermal wave speed. For the case of 77> 7, the
temperature gradient established across a material domain is a result
of the heat flux, implying that the heat flux vector is the cause and the
temperature gradient is the effect. For 77<7,, heat flux is induced by
the temperature gradient established at an earlier time, implying that
the temperature gradient is the cause, while the heat flux is the effect.

In a local energy balance, the energy conservation of bioheat
transfer is described as [71]:

or
—V‘q+wabcb(Tb—T)+qm=p05, ()

where p is the tissue density, ¢ the specific heat of the tissue, p,
the blood density, ¢, the specific heat of the blood, w, the blood
perfusion rate, g,, the metabolic heat generation and 7}, the arterial
blood temperature. The first term on the left-hand side represents
heat conduction or diffusion, second term the heat exchange between
blood and tissue due to blood perfusion that acts like temperature
dependent heat source, the third term the heat generation due to
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Fig. 1. Computational domain of the axisymmetric multilayered skin tumor model; a) isometric view with named tissues and b) cross sectional view with dimensions and boundary names

the metabolic activity and the term on the right-hand side the heat
accumulation. The heat exchange between the arterial blood flow and
the tissue proposed Pennes in 1948 [72] who assumed that it happens
on the capillary level due to the large interface area. Therefore,
the blood perfusion rate represents the volumetric blood flow rate
through the capillary network and small arterioles per tissue volume
and is non-directional.

Applying first-order Taylor series expansion of the Eq. (1), while
neglecting higher-order terms, we can rewrite the definition of the
heat flux as:

OVT(r,t) . 3)

Implementing Eq. (3) to the Eq. (2) yields the (type I) DPL
equation of bioheat transfer [61,68]:

o'T or
quc?+(pc+rqwbpbcb)5 =

q(r,t)+rq2—(tl(r,t) = —/I{VT(r,t)+TT

2

= AV2T+T,xaz—tT+wbpbcb(Tb -T)+q,, 4
where heat conductivity of the tissue and metabolic heat generation
assumed to be constant; 4 = const. and ¢,, = const. The first term on
the left-hand side of the Eq. (4) represents the hyperbolic term that
captures thermal inertia due to the finite speed of heat propagation,
which is otherwise not present in the bioheat models using Fourier
law of heat conduction. The second term on the left-hand side is
the energy storage term from the classical heat conduction, that is
now extended to account for the delayed effect of blood perfusion
on heat transfer. The first term on the right-hand side represents
classical heat conduction, while the second term, which is the mixed-
derivative term dramatically alters the fundamental characteristics of
heat propagation, by removing the wave behavior of the hyperbolic
type of equation becoming parabolic in its nature. In the case of 7,=0
and 7;=0 or 7,=77, the DPL model reduces to the classical Pennes
equation.

The non-Fourier DPL bioheat model given by Eq. (4) is written
for each layer or tissue of the skin cancer model, assuming constant
material properties and parameters. Equilibrium and compatibility
conditions have to be prescribed at the interface between two adjoint
tissues to describe the bioheat transfer in the whole computational
domain. The compatibility condition at the interface is:

T(s:1) =T, (s:1), )
where indices / and i+ 1 represent adjoint layers and s position vector
of the interface boundary. This condition represents that there is no
contact resistance between the layers. While equilibrium condition
represents the conservation of energy and is written as:

q; (S,t) ‘n;=q,, (S,t) N, (6)
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where n represents the normal vector. By applying definition of the
heat flux given by Eq. (3) to the equilibrium condition, it can be
rewritten in the following form:

—/‘L{.[V]}+Triavﬂj—r iaqi ‘m, =
toot ot

aV];HJ_T aqi+1:|_n
q,i+1 i+1°

ot ot @)

|:’1i+1 (VTM TTrin
which is complex and not easy to implement. For the example when
Tq,i=Tgit1 and T7; =77, the equilibrium condition can be rewritten in
the form —A,VT;n;=—X;;V T}, 'n;; which is well known equilibrium
condition in heat transfer.

2.1.3 Boundary Conditions

Because the bioheat problem has been treated as axisymmetrical, the
tissue temperature and other field functions like heat flux has been
transformed from classical cartesian coordinate system to cylindrical
one which does not depend on the angle; 7(x,),z,¢) — 1(xz1t), and
where r represents the radial distance from the center and z the depth
from the top of domain.

To simulate dynamic thermography, it is essential to define
appropriate initial and boundary conditions for the computational
domain. For the bottom section of the domain, Dirichlet boundary
condition is applied. This choice is based on the assumption that
the muscle tissue is thick enough to preserve body core temperature
throughout both the cooling and warm-up phases. Therefore, at the
bottom we prescribed the following condition:

T(r,z,t)=T1,, z=H, 0<r<D/2, 0<t<¢,, ®)
where T, is the body core temperature and £, =0t tyyurm 1S the
total simulation time, which is composed of the cooling time ¢,
and the warm-up time ¢,,,,. The body core temperature can vary
between 36.5 °C to 37.5 °C and has chosen to be 7},.=37 °C, as this
is considered to be the average core body temperature of a healthy
person at rest [17,44,52].

On the sides of the domain we prescribed adiabatic boundary
condition, based on the assumption that there are no side effects that
will influence the thermal contrast of the lesion:

q(r,z,H)=0—> 6—T(r,z,t) =0,0<z<H,r=D/2,0<t<t,, (9)

»
To simulate cooling with the cold air jet and rewarming period, we
prescribed Robin boundary condition as:

q(r,z,t) :Z—T(r,z,t) = a(T(r,z,t)—Tw),
r

z=0, 0<r<D/2, 0<t<t¢ (10)

sim?



where o represents the heat transfer coefficient of the cooling
air jet during the cooling time or the heat transfer coefficient to
the environment during the rewarming time, and 7, denotes the
temperature of the cooling jet or ambient temperature. During the
cooling phase, the heat transfer coefficient was set to a=50 W/(m2K)
and the temperature of the cold air jet to 7,,=5 °C. After cooling
time 7,,,;, the cold air jet is removed, and rewarming occurs due to
metabolic heat production, blood perfusion and heating from the
environment. In the rewarming phase, the heat transfer coefficient
is reduced to =10 W/(m2K), and the ambient temperature is set to
T,=22.4 °C which is the same condition used for the steady-state
simulation and is based on the following work [33,45,52,68].

The total simulation time has been set to #;,=80 s, with the
cooling phase lasting ¢.,,,=30 s and the rewarming phase ¢,,,,,, =50 s.
The choice of a 30 s cooling phase is based on the work of Godoy
et al. [73] that used a rewarming duration of #,,.,=120 s. We
deliberately opted for relatively short cooling and rewarming times
compared to other studies [42,52], as our primary focus is to examine
the thermal behavior of tissue under highly transient conditions, and
to shorten the examination period of the dynamic thermography.

The initial temperature condition 7(rz,¢=0) was set to the steady-
state solution of the bioheat problem, determined by the boundary
conditions specified with Eq. (8) to Eq. (10). This approach assumes
that the patient has already acclimated to the conditions in the
examination room.

2.1.4 Model Parameters

Material properties for each tissue layer can vary a lot and are not
determined exactly as stated by Cetingiil and Herman [44]. Therefore,
the material properties have been taken as an average value found in
the literature and can also be found in the work of other authors [33,42-
45,52]. For tumor with different stages, we assumed and prescribed
the same material properties, due to the lack of more precise data;
therefore, stage differs only with the size of the tumor as suggested
by Clark [26]. Table 1 gathers the material properties like density,
specific heat, blood perfusion rate, relaxation times etc., used in the
presented skin tumor model together with the tissue dimensions.

Relaxation times 7, and 77 needed for the non-Fourier DPL
bioheat model remains challenging to define exactly due to the lack
of experimental data, significant variability and ongoing debate. For
processed meat, these values are estimated to be 7,=14 s to 16 s and
77=0.043 s to 0.056 s, while for muscle tissue from cow have shown
values 7,=7.36 s to 8.43 s and 77=14.54 s to 21.03 s [65,74]. The
relaxation times 7, and 77 in this work were determined based on the
expressions provided in the generalized DPL model by Namakshenas
et al. [59] that is based on the tissue porosity as well. However, in
this work the influence of porosity is taken into account through
effective tissue properties instead. The relaxation times 7, and 77 can
be estimated using the following expressions [59]:

z, __elze) %, (11
g+(1—g)}
L C

o 20=8) _pe 12
£ i1-¢)

where ¢, =%c/pbcb represents the stored energy of the tissue relative
to that of the blood, while 4,,=1/4; denotes the thermal conductivity
of the tissue compared to the blood. G is the coupling factor between
the tissue and blood, defined as [59]:

4¢2,
= Nu+ p,w,c,,

b (13)

G=
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where Nu is the Nusselt number and dj, the representative artery
diameter of the tissue.

The thermal relaxation time 7, for all layers, except the tumor and
epidermis, was determined based on Eq. (11) by prescribing Nusselt
number to Nu=4.93 and artery diameter to d,=1.5 mm, representing
average value for the skin and muscle.

For tumor layer we assigned a higher 7, value than the other tissues
to reflect its increased perfusion rate and structural inhomogeneity
[75], therefore, we set it to 7,=3.0 s for the tumor. In contrast, the
epidermis, which lacks blood vessels and is more uniform than other
tissue layers, was given a lower thermal relaxation time. We set 7, for
the epidermis to 7,=0.3 s, assuming that despite its homogeneity, it
still introduces some thermal resistance due to delayed heat transfer.
The values for 77 were selected based on the stability criteria for DPL
presented by Quintanilla and Racke [76]. In this study, 77 was chosen
to be half of z,, with 7;/7,=1/2, in order to satisfy the stability limits
commonly associated with higher-order Taylor series expansions.
The values chosen for the 7, and 7y for each tissue are also gathered
in Table 1.

The arterial blood temperature needed for governing equation
is assumed to be as equal as defined body core temperature;
Tp=Tp.=37.0 °C.

2.1.5 Solver and Discretization

Presented multilayered skin cancer model based on the non-Fourier
DPL bioheat equation to simulate dynamic thermography is highly
non-linear and numerically difficult to solve. For this reason, we
wrote our own solver based on the subdomain BEM approach using
elliptic axisymmetric fundamental solution and quadratic elements,
which has been tested on bench-mark problems of other authors [77-
79]. A detailed description of the solver and numerical discretization
of non-Fourier DPL model with the treatment of equilibrium
condition at the interface can be found in our previous work [68].
The maximum number of non-linear steps for dynamic thermography
simulation and inverse bioheat problem was set to /,,,,=20, with a
maximum error tolerance of e=1-10-8

To discretize computational domain, we used our own 2D
structured mesh generator with the representative spatial element size
of Ar=Az=0.5 mm, with minimal number of 2 elements in z direction
in each layer. A non-uniform mesh was used with an expansion factor
of {(=1.1 in both spatial directions from the center. The reason for
using own mesh generator is due to the inverse problem solving,
where diameter and thickness of the tumor is changing during the
optimization process where generation of a new mesh must be done.
For the Clark II example, the computational mesh consists of 360
computational cells and 1517 computational nodes, while for the
Clark IV example the mesh includes 442 computational cells and
1855 nodes and is presented in Fig. 2. The difference in mesh density
between these two examples is because of different tumor sizes,
generating different element sizes for tumor discretization, which
affects the size of the structured mesh for the whole computational
domain. Presented mesh density has been confirmed to be adequate
following a mesh sensitivity study. Similar, by time step sensitivity
analysis, we define the time step needed to describe the transient
behavior of the model. For time discretization of 7;,, =80 s a constant
time step of Ar=0.5 s has been taken.
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Table 1. Tissue dimensions and material properties of the skin cancer model

Layer d [mm] h [mm] plkg/ms] ¢, [YkgK] AWK w5~ g, [W/md] 7, [s] tr[s]
Epidermis - 0.1 1200 3589 0.235 - - 0.30 0.15
Papillary Dermis - 0.7 1200 3300 0.445 0.0002 368.1 2.28 1.14
Reticular Dermis - 0.8 1200 3300 0.445 0.0013 368.1 2.46 1.23
Fat - 2.0 1000 2674 0.185 0.0001 368.3 2.16 1.08
Muscle - 8.0 1085 3800 0.510 0.0027 684.2 2.22 1.1
Blood - - 1060 3770 - - - - -

Tumor Clark I 2.0 0.44 1030 3852 0.558 0.0063 3680 3.00 1.50
Tumor Clark IV 25 1.1 1030 3852 0.558 0.0063 3680 3.00 1.50
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Fig.2. 2D computational mesh representing axisymmetric cylindrical domain
for Clark IV example

2.2 Inverse Bioheat Problem

When the numerical simulation of certain processes or phenomena
is needed, we are talking about direct problem. For example, the
simulation of dynamic thermograph is direct bioheat problem, where
we must prescribe governing equation of the process, geometry, all
material or model properties and boundary conditions describing
the process. These problems are well-posed, meaning that they have
a unique and stable solution that can be obtained using established
numerical or analytical methods. However, when certain parameters,
such as material properties, boundary conditions or internal sources,
are unknown and must be estimated from indirect measurements,
we encounter what is known as inverse problem. Inverse problems
seek to determine unknown inputs based on observed outputs. Their
solution depends on the mathematical model used and is often
sensitive to measurement noise or model inaccuracies, which can
lead to instability or non-uniqueness of the solution, characteristics
that make inverse problems ill-posed by nature [42,45-47,52,80,81].

To solve inverse problem an optimization approach has been
used. The inverse problem is transformed to optimization process by
objective function that measures the difference between simulated
temperature response and actual measurement data. The solution of
the inverse problem is represented by the minimum of the objective
function. A well-posed inverse problem should have only one global
minimum; otherwise, the solution is not unique, making parameter
estimation unreliable [42,45,52].

This paper covers two test examples; Clark II and Clark IV, to
evaluate their important properties based on two different thermal
responses of the tissue, first the absolute temperature; 7, and
second the temperature difference regarding to the healthy skin;
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AT. Therefore, this paper covers four different inverse problems, to
evaluate the feasibility of early skin cancer diagnosis and solution
sensitivity regarding to type of the recorded thermal image.

2.2.1 Measurement Data

Dynamic thermography measurements have been generated
numerically by solving direct bioheat problem with known searched
parameters and by adding a measurement noise to simulate more
realistic measurement data and not to commit inverse crime.

First test example uses early stage (Clark II) skin tumor with
the following searched parameters; d=2.0 mm, /£=0.44 mm,
w,=0.0063 s7!, 7,=3.0 s, and the second one the later stage (Clark
IV) tumor with the following searched parameters; d=2.5 mm,
h=1.1 mm, w, = 0.0063 s, 7,=3.0 s, that has already been
introduced in Section 1 and gathered in Table 1. These parameters
are written here again due to clarity, because they represent the exact
values of the considered inverse problems.

Thermal response during the dynamic thermography has been
recorded in two ways, first as an absolute temperature value and
second as the temperature difference. Fig. 3 shows the absolute
temperature response of simulated dynamic thermography for Clark
II and Clark IV tumor, while Fig. 4 and 5 show the temperature
difference response. As can be seen, the temperature contrast or
difference between the tumor temperature and surrounding healthy
skin is increased during the cooling phase by almost two times,
compared to the steady-state conditions. This is the advantage of
dynamic thermography. The temperature spatial profile is the same
regarding the absolute or temperature difference response, while the
transient behavior is different, as can be seen from Fig. 3 and 4. For
better understanding, Fig. 5 is simulating the processed IR image
at the end of the cooling phase together with the tumor dimension,
where enhanced contrast of dynamic thermography is obtained. It
can be observed that early-stage tumors produce lower temperature
contrast than later-stage ones meaning it can be harder to detect and
diagnose.

Measurement data obtained at the surface of the skin z=0 for
position p and time 7 can be written as:

T;bs.s,p.r = T(rpﬁo’tt)’ (14)
AT, ,, =T(r,.0,t)-T(D/2,0,,), (15)

where index s represents simulation, 7, the radial position of the
measurement points and #, the time of the measurement taken.
Measurement data resolution is very important for successful
parameter estimation, as it needs to describe the temperature response
adequately. The measurement points have been taken in the radial
range of 7, €[0 mm, 5 mm] at ,=6 equally spaced points meaning
that the distance between two measurement points is J,=1 mm.
While for the time measurement the data has been taken during
cooling, as well as rewarming period of dynamic thermography;
t,€[0s, 80s] atintervals of J,= 1 s generating n,= 81 time measurement



points. We notice that this measurement resolution is fine enough
to capture tissue temperature response and to be able to evaluate
tumor parameters. Finer resolution did not increase the accuracy of
the searched parameters, while coarser resolution, especially in time
domain, increased the error in the estimated parameters.

To mimic real measurement data a white noise has been added to
the generated measurement data as:

Tabx,m,p,l = 7;bs,s,p,l + T]AEW’ (1 6)
— n
AT’",P,! - A];,p,t + EAT;W:

a7
where # represents a random number; # €[—1, 1], index m stands
for measurement data and AT, the temperature uncertainty level.
The second term on the right-hand side represents the temperature
deviation or noise. Modern IR cameras can obtain noise equivalent
temperature difference (NETD) value of less than 30 mK. Therefore,
we investigate test examples under three levels of uncertainty; 0 mK,
25 mK and 50 mK [45,52]. The first one represents exact measurement
data, while the last two represent low and high level of noise. In the
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last two cases, the measurement data does not follow numerical
model anymore and therefore no inverse crime is committed. Because
the noisy measurement data are generated randomly, we generated
three different measurement sets for each test example and noise
level, except for the exact one. This way we can also analyze how
the randomness of the added white noise affects the inverse solution.
For a clear presentation Fig. 6 shows the generated measurement
data compared to the simulated dynamic thermography response or
exact data for Clark II and Clark IV test example. As can be seen,
the level of noise can affect the temperature response for the Clark II
more than for Clark IV, which makes solving inverse problem more
difficult and poor accuracy to be expected for early-stage tumor.

2.2.2 Objective Function

Objective function measures the difference between simulated
temperature response of dynamic thermography by guessed searched
parameters and generated measurement data in our case. Therefore,
the objective function for the absolute temperature response can be
defined as:

Clark Il

b) t=30's
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Fig.3. Simulated absolute temperature response 17,  at the skin surface for Clark Il and Clark IV tumor during dynamic thermography:
a) transient response for tumor position 7= ( and healthy skin at position = 1/2, and b) radial temperature distribution at the end of cooling phase 7 = 30 s
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Fig.4. Simulated temperature difference response A7, at the skin surface for Clark Il and Clark IV tumor during dynamic thermography:
a) transient response of maximal temperature difference measured at the center of the tumor, b) radial temperature difference distribution at the end of cooling phase 7 = 30 s
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F® =33 T ) =T )

(18)
t=1 p=1
and for the temperature difference or temperature contrast as:
no Ny 2
F( =23 (AT,,-AT,, ). (19)

=1 p=1
where indices 1 and 2 stand for the absolute and temperature difference
thermal response, respectively, F(-) is the objective function value,
y is the vector of unknown parameters, indices ¢ and p correspond
to the time and location of temperature measurements, while 7, and
n, represent the number of observed time points and measurement
locations. Vector y is defined as y={y;j=1,...,n} =1{d, h,wy,1,},
where n=4 is the number of searched parameters.

2.2.3 Levenberg-Marquardt Algorithm

Deterministic optimization methods work faster and require fewer
evaluations compared to stochastic methods [49] like particle swarm
optimization (PSO) [82], design of experiment (DOE), differential
evolution (DE) [83] or simulated annealing (SA), when objective
function is smooth and computational cost for direct problem is high.

0
x [mm]

In this work, the LM optimization algorithm is chosen because it
balances the advantages of the steepest descent and Gauss-Newton
methods, making it well-suited for nonlinear least-squares problems
[45,84].

The optimization problem is formulated as:

find y*:argmin[F(y)], (20)
Yy
where y* represents the minimum of the objective function and
solution of the inverse problem. The optimization is performed
iteratively, updating the unknown parameter values using:

Vi =Yi B8, = F(Yu) <F(y,), (2
where s represents the search direction, f is the step size, and
indices k and v denote iteration and trial step indices, respectively.
LM algorithm finds the search direction at each iteration step as the
solution to the equation system:

(JZ‘ Jp+ ,ukl)sk ==Ji 1y,

where J represents the Jacobian matrix, u is a damping parameter,
I the identity matrix and f(-) represents the residual vector;
Fy)=1t"(y) f(y) > f(y)={f;i=1,...,m}, where m=nmn, In each
iteration step the Jacobian matrix and damping parameter must be

(22)

Fig.5. Simulated temperature difference A7 contour at the skin surface, simulating the IR image at the end of the cooling phase for;
a) Clark Il and b) Clark IV tumor, while blue line represents tumor diameter
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Fig. 6. Representation of numerically generated measurement data of temperature difference response A7, for Clark Il and Clark IV tumor using 0 mK, 25 mK and 50 mK level of noise:
a) transient response at the center of the tumor, and b) radial response at the end of cooling phase 7 = 30 s
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calculated and updated. The Jacobian matrix is evaluated numerically
using first-order finite difference scheme as:

J :%z fi(yj+ij)_f;(yj),

Moy, Ay,
where indices i and j represent the row and column of matrix J, and
Ay; represents the change of parameter j, which has been taken as 1 %
of its value; Ay;=0.01y;,.

Once the search direction s;, is known the solution can be updated
using Eq. (21) where the descent criteria is checked; F(yi41) <F(Yp)-
The step size is taken as fy=1 for the first trial, as the search direction
is also controlled by the damping parameter x. If the descent criteria
is not met, the step size is then reduced by S, =4,/2.

The damping parameter is updated by equation:

(23)

1
oy = M, ma){g,l—(ZGk —1)3}, (24)
where 0 represents the gain ratio as:

_ Fy)-F(¥e)
Z©0)-Z(Bs,)
where Z(-) represents a linear Taylor expansion of the objective
function. For the first iteration step, the damping parameter has been
chosen to be uy=10"max(J"-J).
To stop the optimization algorithm, we used three stopping criteria
where only one of them has to be fulfilled:

(25)

k

k>k, . (26)
i1 (ve). | <2 @7
||Yk+1 - Yk" <e, ("yk" + 82)’ (28)

where k,,,, represents the maximum number of iterative steps and ¢,
and ¢, the tolerance for the gradient and step size, respectively. The
maximum number of iterative steps has been chosen to be £,,,,,=50,
while the tolerance for the second and third criteria has been taken as
£1=6,=1078.

Table 2. Different starting points for the optimization process

Example Vo d [mm] hlmm]  w,[s7] 7, [s]
1 2.3 0.60 0.0080 3.5
Clark Il 2 1.9 0.50 0.0060 2.8
3 1.7 0.30 0.0050 1.5
1 2.4 0.90 0.0090 3.7
Clark IV 2 2.6 1.20 0.0060 2.8
3 1.8 0.70 0.0050 1.7
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2.2.4 Starting Point

To test the stability of the inverse solution depending on the initial
guess, we have chosen three different starting point of optimization
process. Table 2 is gathering the different initial guesses for the
optimization process for Clark II and Clark IV example. One starting
point is close to the exact solution, while other two are more off.

3 RESULTS AND DISCUSSION

Results of the inverse bioheat problem are presented in tables, which
are the most appropriate to show the estimated value of the searched
parameters. For better representation of results accuracy, the relative
error for certain parameters is highlighted with the gray color in
the tables where intensity reflects its level. This section covers the
analysis of the starting point, measurement noise and randomness of
the measurement data using the absolute temperature response, while
at the end the effect of thermal response type is presented.

3.1 Starting Point

The analysis of the starting point has been carried out first to evaluate
its effect on the solution of the inverse problem and stability of the
optimization process. Table 3 shows the solution of the inverse
problem together with the relative error regarding the starting point
for Clark IV tumor using absolute temperature response. The solution
for the exact measurement data; 0 mK, coincidence with the exact
data and does not depend on the starting point. Solution of the inverse
problem also does not depend strongly on the starting point for the
noisy measurement data; however, there can be a slight difference
but negligible. The average objective function value reached for the
exact measurement data was 1.39-107° K2 in 12 optimization steps.
While for the noisy measurement data the objective function value
increased to 2.65-1072 K2 for the 25 mK noise and to 1.07-107" K?
for the 50 mK with the average number of optimization steps 10,
because the measurement data does not follow the numerical model
exactly due to the noise. Similar observation and conclusion have
been made using different set of measurement data, Clark II example
and temperature difference response, and is therefore omitted here.

At this point, we can conclude that solution of the inverse bioheat
problem using LM algorithm does not depend on the initial guess
or starting point making optimization method stable, as well as that
convergence of the optimization process is fast.

3.2 Measurement Noise and Data

Here, we would like to evaluate how the level of measurement noise
and randomness of generating the measurement data set affects

Table 3.  Solution of the inverse problem for Clark IV example using different starting points and absolute temperature response; /'; (y), together with relative error

Solution Relative error
AT, Yo d [mm] h [mm] wp [s7'] 7, [8] d [%] h [%] W [%] 7y [%]
Exact 2.50000 1.10000 0.006300 3.00000
1 2.50002 1.09995 0.006300 3.00002 0.00 0.00 0.01 0.00
0 mK 2 2.50001 1.09996 0.006300 3.00001 0.00 0.00 0.00 0.00
3 2.50002 1.09996 0.006300 3.00001 0.00 0.00 0.00 0.00
1 2.50889 1.11174 0.006188 2.97513 0.36 1.07 1.78 0.83
25 mK 2 2.50997 1.09994 0.006230 2.97529 0.40 0.01 1.11 0.82
3 2.50909 1.11072 0.006191 2.97496 0.36 0.97 1.73 0.83
1 2.51047 1.00056 0.006691 3.03187 0.42 9.04 6.21 1.0
50 mK 2 2.51011 1.00098 0.006691 3.03156 0.40 9.00 6.21 1.05
3 2.51019 1.00031 0.006694 3.03156 0.41 9.06 6.25 1.05
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Table 4. Solution of the inverse problem for Clark Il example using different measurement data set of absolute temperature response; /'; (y), together with relative error

Solution Relative error
AT, Yo d [mm] h [mm] wy [571] 7, [s] d [%] h [%] w, [%] 7, [%]
Exact 2.00000 0.44000 0.006300 3.00000
1 2.00000 0.43494 0.006380 2.99436 0.00 1.15 1.26 0.19
25 mK 2 2.00000 0.43730 0.006314 2.96224 0.00 0.61 0.22 1.26
3 2.00000 0.44054 0.006271 3.03409 0.00 0.12 0.46 1.14
1 2.01886 0.43046 0.006178 3.03609 0.94 217 1.93 1.20
50 mK 2 2.00000 0.46098 0.006174 2.91235 0.00 477 2.00 2.92
3 2.00000 0.42768 0.006426 2.95631 0.00 2.80 2.00 1.46

the solution. Because, it has been shown that the solution does not
depend on the starting point, we set starting point 3 for all our further
calculations. Table 4 shows the obtained results for Clark II example
using absolute temperature response and different data sets for 25 mK
and 50 mK noise level together with relative error. As can be seen,
the solution varies on the randomness of the noise or measurement
data set and the relative error of the solution increases by increasing
the level of noise. Diameter of the tumor d can be determined very
accurately, while other parameters have the same level of error,
however, still under 5 %, meaning a good estimation or retrieval of
the searched parameters. Similar findings have also been found for
Clark I'V example and are therefore omitted here.

From this small analysis, we can conclude that the solution of the
inverse problem depends on the level of the noise and randomness
of the generated measurement data set. Therefore, it is important to
generate or record more than one measurement data set to evaluate
the deviation of the solution.

Because inverse problem solution depends on the randomness
of the measurement data, it is better to use statistical indicators like
mean value, deviation and coefficient of variation (COV). We are
well aware that three different solutions are too small sample size
to make accurate statistical analysis, however, it can still give us the

Table 5.  Solution of the inverse bioheat problem for Clark Il and Clark IV example under noisy
measurement data sets of ahsolute temperature response; /' (y), showing the mean value,
deviation, COV and mean relative error

insight on the accuracy of the inverse solution and its dependency.
Table 5 shows the obtained inverse solution for Clark II and Clark IV
examples using statistical indicators for noisy measurement data of
absolute temperature response, together with the mean error.

As can be seen from Table 5 for Clark II the diameter can be
determined very accurately regarding the noise level, while the
accuracy of other parameters is in the same range of less than 1 %
for low noise level and increases to 2 % to 3% for high noise level.
The COV also shows the deviation of the estimated parameters that
coinciding with the average error and increases by increasing level
of noise, meaning that these parameters will be hard to evaluate in
real experimental setup. Similar conclusion can be made for Clark
IV example that shows good evaluation of tumor diameter and better
evaluation of relaxation time than for Clark II example, while the
error for tumor thickness and blood perfusion rate is slightly higher
but still in the same range, less than 5 %. This shows that relaxation
time can be easily obtained for later stage tumor.

Findings coincide with the findings of our previous work [45],
where diameter can be determined very accurately even for the
noisy measurement data, regarding the stage of the tumor. And also,
that blood perfusion rate and thickness show lower accuracy and
interdependence.

Table 6. Solution of the inverse bioheat problem for Clark Il and Clark IV example under noisy
measurement data sets of temperature difference response; /,(y), showing the mean value,
deviation, COV and mean relative error

AT dimm]  A[mm]  w,[s7]  z,[s]
er Exact 2.00000 0.44000 0.006300 3.00000
Mean value  2.00000 0.43759 0.006321 2.99690
25 mK Deviation 0.00000 0.00281 0.00005 0.03599
Clark COV [%] 0.00 0.64 0.86 1.20
I Error [%] 0.00 0.63 0.65 0.86
Meanvalue 2.00629 0.43971 0.006260 2.96825
50 mK Deviation 0.01089 0.01848 0.000144 0.06273
COV [%] 0.54 4.20 2.30 2.11
Error [%] 0.31 3.25 1.98 1.86
AT dimm]  A[mm]  w,[s7]  z,[s]
er Exact 2.50000 1.10000 0.006300 3.00000
Meanvalue 2.50510 1.11683 0.006204 2.98604
25 mK Deviation 0.01363 0.01486 0.00001 0.01856
Clark CQV [%] 0.54 1.33 0.21 0.62
v Error [%] 0.47 1.53 1.52 0.63
Meanvalue  2.50793 1.08020 0.006355 3.00681
50 mK Deviation 0.01973 0.06984 0.000308 0.02167
COV [%] 0.79 6.47 4.85 0.72
Error [%] 0.66 4.24 3.30 0.47
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AT dimm]  A[mm] wy[s7]  7,[s]
Exact 2.00000 0.44000 0.006300 3.00000
Meanvalue 2.00045 0.45606 0.006094 2.98212

Deviation ~ 0.00079 0.01779 0.000302 0.08330

Clark 25mK oy %] 0.04 3.90 4.95 2.79
I Error [%] 0.02 431 455 2.16
Meanvalue 2.02638 0.42853 0.006277 2.93446

Deviation ~ 0.03468 0.04114 0.000690 0.18607

SOmK ooV %] 171 960 1099  6.34
Error [%] 1.32 6.59 8.54 5.32

AT dimm]  A[mm] w,[s7]  7,[s]
Exact 2.50000 1.10000 0.006300 3.00000
Meanvalue 250208 1.07415 0.006387 2.99885

o5 Deviaion  0.00561 001426 0000134 001172
Clark COV [%] 0.22 1.33 2.10 0.39
v Error [%] 0.17 2.35 1.79 0.31
Meanvalue 2.52163 1.09922 0.006311 3.06237

s Deviation  0.03057 0.07763 0000486 0.06745
COV [%] 1.21 7.06 7.70 2.20

Error [%] 1.15 4.98 5.44 2.42




3.3 Type of Thermal Response

Table 6 shows the obtained solution of the inverse problem using
temperature difference response for both test examples. Comparing
results to the one from Table 5, where absolute temperature response
has been used, we can draw the same conclusion of estimating
unknown parameters. Accuracy of tumor diameter and relaxation
time is still better from the blood perfusion rate and tumor thickness,
especially for Clark I'V. The relative error of the estimated parameters
based on the temperature difference response is higher than the
results based on the absolute temperature response, especially for the
carly-stage tumor. This means it is better to use absolute temperature
response to diagnose early-stage tumor. However, using temperature
difference response shows that accuracy of the parameters is better
for later stage tumor. These findings coincidence with our previous
work [45]. Nevertheless, early-stage diagnosis is still possible using
temperature difference response and good accuracy of estimated
parameters can be obtain by keeping the level of measurement noise
low.

From the analysis done on the solution of inverse bioheat problem,
we can conclude that all searched parameters can be successfully
evaluated even for high level of measurement noise, especially tumor
diameter and relaxation time where relative error of the obtained
parameters is less than 5 %. Based on this study, it is better to
determine unknown parameters using absolute temperature response
than temperature difference, especially for an early-stage tumor.
However, from the practical point of view, temperature difference
response is preferred because it does not depend strongly on the
prescribed body core and surrounding temperature, making it more
general and still accurate enough.

4 CONCLUSIONS

This paper presents a numerical framework for the non-invasive
skin cancer diagnosis using dynamic IR thermography, supported by
improved skin cancer model and inverse problem analysis, to estimate
tumor diameter, thickness, blood perfusion rate and thermal relaxation
time. A novel contribution of this work lies in the integration of the
non-Fourier DPL bioheat model into a multilayered, axisymmetric
skin cancer model, enabling a more realistic simulation of thermal
behavior in heterogeneous biological tissues under transient thermal
stimuli. The DPL model offers significant advantages over classical
Fourier-based models by accounting for thermal lag, finite thermal
wave propagation, and directional effects that are critical for capturing
fast and localized thermal dynamics near skin tumors. To simulate
dynamic thermography response, we used our own developed solver
based on subdomain BEM approach that gives accurate solution and
proves to be efficient, which is very important for solving inverse
bioheat problems.

The inverse bioheat problem solved in this work is to find
four important tumor parameters based on the non-Fourier DPL
skin cancer model and transient thermal response of dynamic
thermography, which also presents the novelty of this work.
We analyze two different responses; absolute temperature and
temperature difference response on two examples; Clark II and Clark
IV stage tumor. Measurement data or thermal response has been
generated numerically by prescribing known searched parameters
that we would like to retrieve through inverse problem, and direct
numerical simulation of dynamic thermography. A measurement noise
of 25 mK and 50 mK has been added to the simulated responses for
the Clark II and Clark IV tumor, to obtain more realistic measurement
data. For dynamic thermography a convective cooling approach with
cold air jet has been chosen, which replicates a clinically feasible
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dynamic thermography scenario, allowing recording of temperature
response during both cooling and rewarming phases. To solve the
inverse bioheat problem, a hybrid LM optimization algorithm has
been implemented that was combined with direct bioheat problem of
simulating dynamic thermography using BEM.

The results showed that solution of the inverse problem does not
depend on the initial guess making LM algorithm robust, accurate
and efficient for this type of inverse problem. All four parameters
can be retrieved exactly only for the measurement data that follows
numerical model exactly. However, this is not possible in real life
problem. The parameters can be still retrieved very accurately even
under higher level of measurement data noise, especially the diameter
and thermal relaxation time for both examples using absolute
temperature response. Blood perfusion rate and tumor thickness
exhibit slightly higher estimation error but remain within acceptable
bounds. The accuracy of the estimated parameters is lower when
using temperature difference response, however, this is practically
more feasible, because the temperature contrast does not depend
strongly on the body core temperature or boundary condition at the
bottom of the numerical model. For Clark II example, all parameters
were estimated with relative errors below 5 % for lower level of
measurement noise, demonstrating strong potential for early-stage
skin cancer diagnosis.

Overall, this study confirms that dynamic IR thermography,
combined with non-Fourier bioheat modeling and inverse analysis, is
a promising tool for non-invasive skin cancer assessment. The ability
to estimate not only geometric properties but also physiological such
as blood perfusion and thermal relaxation time provides insight into
tumor size, stage, and invasiveness.

Future work will focus on developing this approach even further
in the field of numerical simulations, solving inverse problems,
statistical assessment of the approach, as well as on the experimental
validation of the proposed model and real-time implementation
strategies.
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Numeri¢no resevanje inverznega problema dinami¢ne termografije
za diagnostiko koznega raka na osnovi nefourierovega modela
prenosa toplote

Povzetek Clanek obravnava numeriéno reSevanje inverznega problema
prenosa toplote za dolocitev Stirih parametrov koZnega raka: premer, debelino,
perfuzijski pretok krvi in relaksacijski ¢as. DoloCitev temelji na toplotnem
odzivu koZe pridobljenim z dinamicno termografijo ter numericnim modelom
koZnega raka ki lahko bistveno izboljSa diagnosti¢no vrednost termografije.
Za Cim bolj realisti¢en opis prenosa toplote v tkivu med procesom dinamicne
termografije je bil uporabljen nefourierov model z dvojnim faznim zamikom.
Model koZnega raka je sestavijen iz veplastne koZe, podkozne maScobe
in miSice ter koZnega raka oziroma tumorja. Za reSitev kompleksnega
nefourierovega modela ter simulacije dinamicne termografije je bil razvit
programski paket na osnovi metode robnih elementov. Simulacija dinamicne
termografije, ki za temperaturno vzbujanje uporablia curek hladnega
zraka, je pomembna za resitev inverznega problema, saj z njo pridemo do
termi¢nega odziva oziroma temperaturnega kontrasta na povrsini koze pri
predpostavijenih iskanih parametrih ter njene primerjave z meritvijo. Tako je
bil inverzni problem resen s pristopom optimizacije, pri cemer je bil uporabljen
Levenberg-Marquardt algoritem. Meritve so bili pri tem generirane numericéno
Z vnaprej znanimi parametri tumorja in dodanim Sumom za ovrednotenje
natancénost in obcutljivost inverzne reSitve. ReSitev inverznega problema je
bila pri tem testirana za dva razlicna temperaturna odziva, in sicer absolutno
temperaturo in temperaturno razliko, kakor tudi za dve razlicni stadija
tumorja kot je Clark Il, ki predstavija zgodnji stadij in Clark IV, ki predstavija
pozni stadij. Vsi pomembni parametri tumorja so bili uspesno doloceni tudi
pri visoki stopnji Suma, zlasti premer in relaksacijski ¢as, pri cemer je bila
natancénost ovrednotenih parametrov nekoliko boljSa z uporabo absolutnega
temperaturnega odziva. Rezultati kaZejo na robustno in obetavno metodo
za zgodnjo diagnostiko koZnega raka in pomembno prispevajo na podrocju
modeliranja prenosa toplote v bioloskih tkivih, reSevanju inverznih problemov
ter razvoju dinamicne termografije.

Kljuéne besede numeriéno reSevanje, dinamicna termografija, inverzni
problem, nefourierov prenos toplote, DPL model, metoda robnih elementov,
Levenberg-Marquardt optimizacija
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